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The Role of Cholesterol in Cancer
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Abstract

The roles played by cholesterol in cancer development
and the potential of therapeutically targeting cholesterol
homeostasis is a controversial area in the cancer community.
Several epidemiologic studies report an association between
cancer and serum cholesterol levels or statin use, while others
suggest that there is not one. Furthermore, the Cancer Genome
Atlas (TCGA) project using next-generation sequencing has
profiled the mutational status and expression levels of all the
genes in diverse cancers, including those involved in cholesterol
metabolism, providing correlative support for a role of the
cholesterol pathway in cancer development. Finally, preclinical
studies tend to more consistently support the role of cholesterol
in cancer, with several demonstrating that cholesterol homeo-

Introduction

Cholesterol level tends to be high in cancer cells but it is
currently controversial as to what this means (1, 2). Some epi-
demiologic studies suggest a positive association between elevat-
ed serum cholesterol level and risk for certain cancer types (3-5).
For example, a 10 mg/dL increase in cholesterol was associated
with a 9% increase in prostate cancer recurrence (5). Furthermore,
another study suggests that statin use was associated with lowered
risk of melanoma, non-Hodgkin lymphoma, endometrial, and
breast cancers (6-8), while another report documents a dose-
dependent reduction in colorectal cancer mortality with statin use
(9). Recently, a case-control study with 295,925 cancer patients,
suggested a link between statin use and a slight reduction in
cancer-related mortality for 13 different cancer types (9). While
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stasis genes can modulate development. Because of space
limitations, this review provides selected examples of the
epidemiologic, TCGA, and preclinical data, focusing on altera-
tions in cholesterol homeostasis and its consequent effect on
patient survival. In melanoma, this focused analysis demon-
strated that enhanced expression of cholesterol synthesis genes
was associated with decreased patient survival. Collectively, the
studies in melanoma and other cancer types suggested a poten-
tial role of disrupted cholesterol homeostasis in cancer devel-
opment but additional studies are needed to link population-
based epidemiological data, the TCGA database results, and
preclinical mechanistic evidence to concretely resolve this con-
troversy. Cancer Res; 76(8); 2063-70. ©2016 AACR.

these epidemiologic studies suggest a possible role for cholesterol
involvement in cancer, they have been criticized for having
intrinsic limitations and a solely retrospective focus (9). Surpris-
ingly, an equal number of epidemiologic studies suggest no
association between cholesterol and cancer (9-12). In fact, in
some cases, cancer was linked to low cholesterol levels and statins
were speculated to have carcinogenic properties (13-15). This
conflicting epidemiologic evidence is the major reason for the
uncertainty regarding a role for cholesterol in cancer development
and it is currently unclear as to how this could be resolved.

The role of dietary cholesterol in cancer development is also
controversial. Many case-control studies suggested a positive
correlation between risks of several malignancies and dietary
cholesterol uptake (16-18). However, the conclusiveness of these
studies is arguable, being dependent on dietary surveys that are
notoriously unreliable. Preclinical studies tend to be more sup-
portive of a role of dietary cholesterol in cancer development. For
example, controlled experiments in mice suggest an association
between dietary cholesterol and cancer, but extrapolation to
humans is difficult as dietary cholesterol has limited effect on
blood cholesterol levels in humans (19). Thus, while dietary
cholesterol might be indicative of a lifestyle prone to health-
related problems, including cancer, dietary cholesterol alone
seems unlikely to promote cancer development.

While the contradictory epidemiologic studies fuel the contro-
versy regarding a role for cholesterol in cancer, preclinical studies
more consistently suggest involvement. Multiple mechanisms
promoting deregulation of cholesterol homeostasis have been
identified that could lead to cancer development (1, 20-24).
Recent studies also suggest that intracellular cholesterol levels in
the evolving cancer cell might be more important than serum
cholesterol (25, 26). Furthermore, intracellular cholesterol
homeostasis varies among different cancer types, and therefore
cholesterol could play differing roles dependent on cancer type
(27). Thus, intracellular cholesterol levels appear more important
than dietary cholesterol in cancer development.
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Cholesterol Metabolism and Its Role in
Cancer

Normal cholesterol homeostasis

Cholesterol is an essential lipid for maintaining cellular
homeostasis (28). Besides being a precursor for steroid hor-
mones, and being an essential component of plasma mem-
branes, it is also enriched in lipid rafts and plays a key role in
intracellular signal transduction (28). Cholesterol is primarily
synthesized in the liver and transported to cells around the
body through the bloodstream as a low density lipoprotein
(LDL)-bound form (29). LDL is taken into cells by clathrin-
mediated endocytosis, and transported to the lysosomes
through the endocytic pathway, where it is then hydrolyzed
to free cholesterol molecules, which are shuttled to the cell
membrane and other cell membrane-bound organelles
(28, 29).

Modulation of cholesterol homeostasis

Cholesterol homeostasis is tightly regulated by a complex
protein network, which involves its import, synthesis, export,
metabolism, and esterification (28). Sterol regulatory element-
binding protein transcription factor 2 (SREBF2) and liver X
receptors (LXR) act as key regulators of cholesterol homeostasis
(28). Endoplasmic reticulum (ER) cholesterol levels serve as a
sensor for intracellular cholesterol homeostasis. A decrease in
ER cholesterol triggers translocation of SREBF2 from ER to golgi
and then to the nucleus to activate transcription of genes
involved in cholesterol synthesis (e.g, HMGCR) and import
into cells (e.g., LDL receptors; ref. 28). On the other hand,
increased intracellular cholesterol levels shut down cholesterol
synthesis and facilitate its export via activation of LXR receptors
by oxysterols, oxidized derivatives of cholesterol (30).

Identification of cholesterol synthesis pathway deregulation in
cancer using The Cancer Genome Atlas

The Cancer Genome Atlas (TCGA) database has profiled RNA
expression levels and DNA mutational status for thousands of
genes in tumors, enabling correlative analysis of particular
cellular pathway involvement in cancer development (31). We
have used the TCGA database to determine whether a prog-
nostic signature of cholesterol synthesis genes could be corre-
lated with patient survival and identified 7 cholesterol synthesis
genes correlated with patient survival (Fig. 1A). In sarcoma,
acute myeloid leukemia, and melanoma, increased activity of
the cholesterol synthesis pathway was correlated with
decreased patient survival while in lower grade glioma it was
associated with enhanced survival (Fig. 1A). Thus, based on the
TCGA database, there appears to be a correlative link between
cholesterol synthesis pathway and prognostic outcome that
could be cancer-type specific. Several oncogenic signals, such
as PI3K/AKT/mTOR, RTK/RAS and TP53, have been shown to
modulate cholesterol synthesis in cancer cells but due to space
limitations only selected examples are discussed below (Fig.
1B). Other examples can be seen in the following references
(32-37).

Activation of cholesterol synthesis by PI3K/AKT/mTOR
signaling

Constitutive activation of PI3K/AKT signaling promotes
intracellular cholesterol levels by inducing cholesterol synthesis
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through activation of SREBP, by inducing LDL receptor-medi-
ated cholesterol import, and inhibiting ABCA1-mediated cho-
lesterol export in an mTORC1-dependent manner (Fig. 1B; refs.
38, 39). The expression of SREBP target genes and ABCA1-
mediated cholesterol efflux was suppressed by rapamycin, the
mTORCI inhibitor (39). Studies in cultured cells and in ani-
mals suggested that induction of cholesterol synthesis by the
AKT/mTORC1/SREBP pathway contributed to cell growth (38).
In prostate cancer, AKT-mediated upregulation of intracellular
cholesterol levels promoted cancer aggressiveness and bone
metastases (40, 41). In glioblastoma, expression of LDL recep-
tors was induced by AKT and pharmacologic targeting of LDL
receptors effectively promoted tumor cell death (42).

Activation of cholesterol synthesis through TP53

Another example of a gene deregulating the cholesterol path-
way in cancer cells is TP53 (Fig. 1B). TP53 is the most frequently
mutated gene in cancer and is a poor prognostic indicator (43).
Loss of TP53 function unregulated the cholesterol synthesis
pathway in breast cancers, which was necessary and sufficient for
disruption of breast tissue architecture (25, 26). Genetic knock-
down of mutant TP53 or pharmacologic inhibition of the cho-
lesterol synthesis pathway reverted the disorganized morphology
of breast cancer cells in a 3D culture model to a more normal
phenotype (25). Prenylation of proteins (a process utilized by
products of the cholesterol synthesis pathway) was essential for
the phenotype. TP53-mediated activation of cholesterol synthesis
has also been found to induce proliferation and self-renewal of
breast cancer cells via prenylation of Rho GTPases (26).

Data from the TCGA database support the preclinical studies
suggesting a role for TP53 in upregulation of cholesterol syn-
thesis genes, including FDPS (also a key protein for the pre-
nylation), in TP53-mutated breast cancer samples (Fig. 1C). As
a key tumor suppressor for a wide variety of cancers, TP53-
mediated modulation of cholesterol homeostasis could con-
tribute to the progression of other malignancies, which requires
further investigation (28).

Deregulation of mitochondrial cholesterol levels in cancer

In several cancer types, elevated mitochondrial cholesterol
levels induced resistance to apoptotic signals (1, 20). STAR and
STARD3 are two essential proteins that regulate cholesterol
import to the mitochondria (Fig. 1B; refs. 20, 22). In hepatocel-
lular carcinoma, increased mitochondrial cholesterol content was
associated with increased expression of STAR and knockdown-
increased sensitivity to chemotherapeutic agents (20). In contrast,
STARD3 was associated with a poor prognosis for breast cancer
patients (44). Decreasing STARD3 levels reduced cell proliferation
and increased cell death in HER2-positive breast cancer cell lines
while it was ineffective in HER2-negative cells (44). Furthermore,
STARD3 overexpression decreased the adhesiveness of breast
cancer cells thereby modulating metastases (22).

Analysis of STAR and STARD3 in the TCGA database further
supports an important role in cancer development. These genes
were upregulated or amplified in approximately 30% of the
TCGA breast cancer cohort, which is in agreement with the pub-
lished preclinical studies (goo.gl/NEnhn]). However, no correla-
tion was found between the expression of these two mitochondrial
cholesterol importers and patient survival either in breast cancer or
hepatocellular carcinoma. Moreover, in several malignancies, ele-
vated expression of STAR and STARD3 was correlated with
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Figure 1.

Cancer patient survival and cholesterol synthesis pathway activity. A, expression of a gene signature representing the activity of the cholesterol synthesis pathway
was analyzed using the UCSC Cancer Genomic Browser. Statistically significant differences in survival of patients were observed between high (red) and low
expressing (green) groups in melanoma, sarcoma, leukemia, and glioma (right). Left, the expression heatmap of various cholesterol synthesis genes are shown for
melanoma. The statistical track displayed under the heatmap shows the logarithmic plot of P values for each genomic position and represents the statistical
difference between the two subgroups (Student ¢ test with Bonferroni correction). A bar above the centerline indicates that the expression of a particular
gene is higher in the red group compared with the green group; and a bar below the center line indicates that the expression of the particular gene is higher in the
green group compared with the red group. The data are available through the UCSC Cancer Brower (goo.gl/56UxKy). HR, hazard ratio (Mantel-Haenszel),

of red versus green group (95% confidence interval; Cl); P, P value of Mantel-Cox log-rank test; MS, median survival; n = number of patients. B, oncogenic signals
initiated from RTK/AKT/mTOR (1), RTK/RAS (2), or mutated TP53 (3) induce the activity of SREBP transcription factor, the major regulator of genes

encoding cholesterol synthesis as well as import proteins (4). Intracellular cholesterol is transported to the mitochondria by START domain family of proteins (5).
Accumulation of cholesterol in mitochondria can suppress apoptosis by inhibiting release of apoptotic proteins from mitochondria (6). However, in mitochondria,
cholesterol is also metabolized to 27-hydroxycholesterol (27-HC), which induces tumor growth in certain cancers (7). Under steady-state conditions,

excess intracellular cholesterol is exported out by ABC transporter family proteins, mainly by ABCAT1(8). Oncogenic signals may inhibit ABCATexpression by inducing
miR-33, leading to intracellular cholesterol accumulation (9). C, breast cancer patients with mutated p53 showed increased expression of various cholesterol
synthesis genes; Error bars, SD. ***, Student ¢ test P < 0.001.
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increased patient survival (Fig. 2A). This was not the case for kidney
cancer where it was associated with a worse prognosis. The con-
tradictory evidence involving STAR and STARD3 in cholesterol and
cancer is an example where further study is needed. Another
complication is that the STAR and STARD3 genes are located in
the same amplicon with two well-known cancer genes,
EIF4EBP1 and HER2, respectively. Therefore, it is possible that
copy number increases of these genes might occur as a bystand-
er effect but this would require validation.

Another example of a cholesterol homeostasis gene deregu-
lated in cancer cells is ABCA1l, a cell membrane-bound
cholesterol exporter (Fig. 1B). Decreased activity of ABCA1
promoted cancer cell survival by increasing mitochondrial
cholesterol levels (1). ABCA1 activity is reduced in colorectal
cancer cells either through loss-of-function mutations or gene
downregulation (1). Transformation of colon epithelial cells
by expression of mutant TP53 and RAS decreased ABCA1
levels and ectopic expression of ABCA1 in TP53/RAS-trans-
formed cells, and decreased xenografted tumor growth (1).
Interestingly, growing tumors had 3-fold lower levels of
ABCA1 expression compared with the original cells, indicat-
ing a selection process for tumor growth. Furthermore, ectop-
ic expression of the loss-of-function mutants of ABCA1 did
not reduce tumor growth and tumors that did develop had
ABCAT1 levels similar to those observed in the original paren-
tal cells.

ABCAL1 is an example where the preclinical and TCGA data are
contradictory. The TCGA database suggests that only 6.6% of
colorectal cancer patients harbor ABCAT mutations, which was
similar to the background somatic mutation rate of 6.7%. Dis-
crepancy between preclinical data and the TCGA database demon-
strates the need for the field to validate the clinical relevance of
preclinical observations.

Role of cholesterol metabolites in cancer development

Cholesterol metabolites have also been associated with the
development of various cancers (45, 46). Mitochondrial cyto-
chrome P450 family enzymes metabolize cholesterol to synthe-
size steroids and oxysterols. The involvement of certain steroids,
such as estrogen, is well known in cancer development (see ref.
47), and will not be discussed here due to space limitations.
Another example is oxysterols that play an essential role in
cholesterol homeostasis. These metabolites inhibit cholesterol
synthesis and enhance its export by activating LXRs (48, 49).
Many of the oxysterols (e.g., 70.-, 73-, 25-, -hydroxycholesterol)
have antiproliferative effects in various cancer types (46). How-
ever, 27-hydroxycholesterol (27HC) has recently been shown to
act as an estrogen receptor agonist in breast cancer, inducing
tumor growth and metastasis (Fig. 1B; ref. 45). In breast cancer,
decreased expression of CYP7BI triggers accumulation of
27HC (50).

Involvement of cholesterol metabolites in cancer development
is an example where the TCGA data are in agreement with the
preclinical studies. Lower levels of CYP7B1 are observed in breast
cancer compared with normal breast tissue (goo.gl/m2j9ks).
However, the role of cholesterol metabolites in cancer develop-
ment needs expansion as well as the involvement of different
metabolites in various cancer types. Targeting the synthesis,
transport, or metabolites of the cholesterol homeostasis pathways
are options for controlling cancer development. Because of space
limitations, selected examples of targeting these processes are

2066 Cancer Res; 76(8) April 15, 2016

provided below. Other examples can be seen from the following
references (37, 42, 51-53).

Targeting cholesterol synthesis

The cholesterol synthesis pathway has more than 15 proteins
that are potential targets to disrupt this pathway in cancer cells
(29). The chemotherapeutic potential of targeting these choles-
terol synthesis genes has been studies preclinically (54-56).
Statins can have antitumor effects and can synergize with certain
chemotherapeutic agents to decrease the development of multi-
drug resistance (54, 57). They are especially effective against
mesenchymal-like cancer cells, and might potently kill cells
having undergone the epithelial-to-mesenchymal transition to
promote metastasis development (57). Several clinical trials have
examined the potential chemopreventive and therapeutic efficacy
of statins (Clinical trial identifier: NCT02534376, NCT02360618,
NCT00584012, NCT01110785). A recent example of a trial that
modulated cholesterol levels to control cancer, involved a short-
term biomarker study involving simvastatin, which reduced
breast cancer recurrence by reducing serum estrone sulfate levels
(58). However, long-term studies are needed to confirm this
observation.

Bisphosphonates and tocotrienols are examples of downstream
inhibitors of the cholesterol synthesis pathway, which in preclin-
ical studies suppressed cultured cancer cell and tumor growth
similar to that observed with statins (59, 60). Geranylgeranylation
of proteins, a branch of the cholesterol synthesis pathway, was
found to be essential for maintaining stemness of basal breast
cancer cells (56). GGTI-288, an inhibitor of the geranylgeranyl
transferase I (GGTI) reduced the cancer stem cell subpopulation
in primary breast cancer xenografts (56). Thus, preclinical studies
suggest that targeting the cholesterol synthesis pathways could be
useful for modulating cancer.

Targeting cholesterol transport and intestinal absorption

Recently, our group demonstrated the preclinical chemother-
apeutic potential of disrupting intracellular cholesterol transport
using a small lysosomotropic compound called leelamine, (61).
Leelamine inhibits cholesterol egress from lysosomes reducing
cholesterol levels in all membrane-bound organelles in cancer
cells (61, 62). Inhibition of intracellular cholesterol transport
consequently led to ER stress and autophagy (61, 63-65). Mel-
anoma cells were more sensitive to inhibition of intracellular
cholesterol transport than normal skin cells, suggesting this agent
could be a useful therapeutic agent (61). Intracellular cholesterol
transport inhibitors could also inhibit tumor cell metastasis by
interfering with cholesterol levels in the trans-golgi network and
reducing cell surface expression of integrins that are fundamental
for cancer cell migration during metastasis (62, 66, 67). However,
the potential of agents like leelamine to inhibit metastasis of
melanoma cells remains to be demonstrated. Thus, while target-
ing cholesterol transport in cancer cells seems to a potentially
important therapeutic approach, utility of this strategy remains to
be demonstrated clinically.

Targeting intestinal cholesterol absorption is another way to
reduce levels in cancer cells. For example, Ezetimibe, an FDA-
approved drug, reduced preclinical prostate tumor growth by
inhibiting intestinal cholesterol absorption (55, 68). While this
approach targets dietary uptake, it does not modulate liver pro-
duced levels in the serum. It might require inhibiting intestinal
uptake and liver production to show clinical efficacy.
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Figure 2.

Genetic alterations in cholesterol homeostasis genes in the melanoma patient cohort of the TCGA database. A, survival of cancer patients based on the
STAR+STARD3 gene signature (goo.gl/6zT8kM). B, around sixty percent of the tumors from 278 melanoma patients in the TCGA cohort displayed increased gene
copy number or expression of cholesterol synthesis genes (goo.gl/tgbV4h). C, copy number increases of cholesterol homeostasis genes can be linked to
amplification sites of known oncogenes, such as AKT3, NOTCH2, MYC, or EP300, or deleted with along with genes linked to cancer. SC5D is an example of a gene
codeleted together with several cholesterol export-related genes. HR, hazard ratio (Mantel-Haenszel), of red versus green group (95% confidence interval; Cl); P,
P value of Mantel-Cox log-rank test; MS, median survival; n = number of patients.
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Concluding Remarks and Future Directions

The TCGA database provides correlative evidence suggesting
the involvement of the cholesterol homeostasis pathways in
cancer development (31). Altered expression levels and muta-
tions of genes involved in the cholesterol homeostasis path-
ways have been identified in cancer cells (68). These include
increases in gene copy numbers, upregulation of cholesterol
synthesis gene expression, enhanced cholesterol import by LDL
receptors, and decreased transport of cholesterol, which pro-
mote increased cellular cholesterol levels to aid cancer cell
proliferation (1, 2, 21, 68). However, the field is still young
and further research is needed to fully dissect the consequences
of these changes and how they modulate cancer development.
Furthermore, correlative TCGA database evidence suggesting
deregulation of cholesterol homeostasis in cancer development
needs validation in preclinical model systems and finally trans-
lation into useful practices in the clinic that could decrease
cancer development.

The following are some questions needing evaluation in the
cholesterol and cancer field. First, the role of the geneticalterations
affecting the cholesterol pathways genes and function in cancer
development needs investigation. For example, many cholesterol
synthesis genes or mitochondrial cholesterol importers are upre-
gulated through copy number increases but the effects on cancer
development remain unknown. For example, approximately 60%
of melanomas had increased expression or chromosomal copy
number increases in at least one of the cholesterol synthesis genes
(Fig. 2B). Several of these alterations were associated with known
chromosomal amplification sites that harbor well-characterized
oncogenes (Fig. 2C). Specifically, HMGCS2 and NOTCH2 and
SQLE and MYC were colocalized to the same amplicons. Possibly,
oncogenes and cholesterol synthesis genes cooperate to promote
disease progression, but this needs demonstration. Similarly,
SC5D, one of the key genes in the last steps of cholesterol synthesis
pathway is localized to 11q23.3 and codeleted with several
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cholesterol export genes (Fig. 2C). The deletion of SC5D may
contribute to cancer progression through a mechanism similar to
that occurring with lathosterolosis, a disease resulting from the
loss of SC5D function (69, 70). Decreased SC5D activity in cancer
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This possibility is supported by data from the TCGA database
where melanoma patients having reduced expression of SC5D
had decreased survival (Fig. 1A). Linking these data to preclinical
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A second question that needs addressing is whether tumors
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of cholesterol homeostasis is an important contributing factor to
cancer development. Studies are needed to link population-based
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clinical mechanistic evidence to more thoroughly dissect the
involvement of cholesterol in cancer development.
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