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Low levels of high-density lipoprotein cholesterol (HDL-C) 
have long been associated with increased risk for car-

diovascular disease (CVD)1 and have been documented as a 
critical risk factor for estimating 10-year risk of CVD.2 This 
is biologically plausible because HDL particles drive reverse 
cholesterol transport and may exert a variety of antiathero-
genic effects.3

However, the relationships between HDL-C, triglycerides 
(TG), and low-density lipoprotein cholesterol (LDL-C) have 
complicated efforts toward establishing the extent to which 

low HDL-C independently increases CVD risk when other 
lipids are within the normal ranges.4 Because TG levels were 
not routinely measured in the Framingham Heart Study until 
recently, the extent to which an isolated low HDL-C might 
associate with increased CVD risk could not have been accu-
rately determined. This has now become a clinically relevant 
issue because outcome trials that have targeted HDL-C phar-
macologically and have included patients with low HDL-C 
at baseline have not demonstrated reduced CVD risk, despite 
appreciable increases in HDL-C.5–10 Similarly, a Mendelian 
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randomization study failed to identify polymorphisms associ-
ated with high HDL-C that correlate with reduced CVD risk.11

Therefore, to clarify the association between HDL-C and 
CVD risk, we compared HDL-C in isolation (ie, low levels 
of HDL-C, TG, and LDL-C) to low HDL-C with higher TG, 
higher LDL-C, or both. We also assessed the extent to which 
high HDL-C either in isolation or combined with higher TG, 
higher LDL-C, or both was associated with reduced CVD risk 
compared with isolated low HDL-C.

Methods
Study Participants
Participants were adult men and women from the Framingham Heart 
Study Offspring Cohort whose baseline evaluation took place be-
tween 1987 and 1991 (examination cycle 4). The development of new 
CVD events12 was monitored through 2011, as previously described.13

Of the initial 3925 participant samples available, 188 were exclud-
ed because of loss to follow-up, history of CVD at baseline, or TG 
>400 mg/dL. After excluding users of lipid-lowering therapy (n=147), 
the final sample size available for analysis was 3590 men and women. 
Blood samples represent single measurements collected during exami-
nation cycle 4 and obtained after an overnight fast of at least 12 hours. 
Total cholesterol and TG were measured using commercial enzymatic 
assays, HDL-C was measured by enzymatic method after precipitation 
of apolipoprotein B-containing lipoproteins, and LDL-C was calcu-
lated using the Friedewald formula.14 The study was approved by the 
institutional review boards at Vanderbilt University, Boston University, 
Dartmouth College, and the National Institutes of Health. Data were 
accessed from Vanderbilt University and Dartmouth College.

Assessment of Risk Factors
We defined isolated low HDL-C consistent with guideline-endorsed 
thresholds (<40 mg/dL for men and <50 mg/dL for women) in the 
presence of optimal LDL-C and TG levels (both <100 mg/dL). 
Thresholds for higher LDL-C and TG were as previously defined, ei-
ther ≥100 mg/dL for each or ≥130 mg/dL for LDL-C and ≥150 mg/dL 
for TG.15,16 The other phenotypes of interest were age, sex, body mass 
index, smoking status, hypertension, and diabetes mellitus.

Outcome Events
Incident CVD was defined as an occurrence of fatal or nonfatal myo-
cardial infarction, stroke, or CVD death. Cases were established as 
previously established by Framingham Heart Study.12,13

Statistical Methods
Logistic regression was used to estimate the odds ratio (OR) and 95% 
confidence interval of CVD risk, using lipid and lipoprotein mea-
surements obtained at examination 4. Isolated low HDL-C (referent) 
was defined as HDL-C <40 mg/dL (men) or <50 mg/dL (women), 
TG <100 mg/dL, and LDL-C <100 mg/dL. We also used alternative 
thresholds for LDL-C <130 mg/dL and TG <150 mg/dL in all com-
binations to assess the independent effects of HDL-C in the presence 
of a variety of backgrounds. Analyses were adjusted for age at initial 
lipid profiling, sex, diabetes mellitus, hypertension, and smoking sta-
tus. All analyses were performed using SAS (Cary, NC; version 9.3).

Results
Table 1 shows the baseline characteristics of our cohort, the 
isolated low HDL-C (referent) stratified by TG and LDL-C 
thresholds of 100 mg/dL. The group with isolated low HDL-C 
(mean: 35±4 mg/dL [men], 44±4 mg/dL [women]) was 
characterized by a relatively normal mean body mass index 
(=26.1±6.3 kg/m2), systolic blood pressure (=118±20 mm Hg), 
and a low prevalence of diabetes mellitus (6%) in contrast to 
low HDL-C groups with a higher TG phenotype (≥100 mg/dL). 
Overall, the baseline characteristics of the isolated high and 
low HDL-C groups were similar, regardless of TG and LDL-C 
measures (Tables I–III in the Data Supplement).

CVD risk was associated with low HDL-C but this 
relationship was influenced by LDL-C and TG (Table  2). 
Compared with isolated low HDL-C, CVD was higher when 
low HDL-C was accompanied by LDL-C ≥100 mg/dL (OR 
1.3 [1.0, 1.6]), TG ≥100 mg/dL (OR 1.3 [1.1, 1.5]), or both 
(OR 1.6, [1.2, 2.2]). These ORs were all adjusted for covari-
ates. In contrast, compared with isolated low HDL-C, isolated 
high HDL-C (low levels of TG and LDL-C in the presence of 
high HDL-C) was consistently associated with reduced CVD 
risk (OR=0.6, [0.5,0.7]). This association persisted even when 
high HDL-C was accompanied by higher LDL-C (≥100 and 
≥130 mg/dL) or higher TG (≥100 and ≥150 mg/dL), but was 
no longer significantly protective when both LDL-C and TG 
equaled or exceeded 100 mg/dL.

To further examine the association of TG on CVD risk, 
ORs were plotted against increasing TG stratified into 4 cat-
egories (low HDL-C and low LDL <100 or <130 mg/dL; low 
HDL-C and LDL ≥100 or ≥130 mg/dL; high HDL-C and 
LDL <100 or <130 mg/dL; and high HDL-C and LDL ≥100 
or ≥130 mg/dL; Figure). As expected, the subgroups with 
LDL-C <100 mg/dL were generally at a lower risk of CVD 
than comparable groups with LDL-C ≥100 mg/dL, regardless 
of HDL-C phenotype. However, LDL-C or TG could affect 
the direction of the association depending on the actual levels.

Discussion
The most novel finding in this study is that low HDL-C in 
isolation is considerably less predictive of CVD risk in the 
presence of high TG, high LDL-C, or both. We are aware of 
one study that attempted to evaluate isolated low HDL-C and 
found it to be associated with increased CVD risk17 but the 

WHAT IS KNOWN

•	 High-density lipoprotein cholesterol (HDL-C) is 
inversely associated with cardiovascular risk (CVD). 
However, the extent to which HDL-C remains an 
independent CVD risk factor when other lipids are 
normal is unclear.

WHAT THE STUDY ADDS

•	 In the Framingham Offspring Study, HDL-C was not 
uniformly predictive of CVD risk.

•	 Triglycerides and low-density lipoprotein choles-
terol were important modifiers of incident CVD at 
both ends of the HDL-C spectrum.

•	 Compared with isolated low HDL-C, the risk of 
CVD was 30% to 60% higher when low HDL-C was 
accompanied by higher levels of TG, low-density 
lipoprotein cholesterol, or both.

•	 High HDL-C was not associated with reduced CVD 
risk if accompanied by TG and low-density lipopro-
tein cholesterol ≥100 mg/dL.
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LDL-C and TG thresholds used (160 and 200 mg/dL, respec-
tively) may have been too high to evaluate the true risk of iso-
lated HDL-C.

For many decades, a low level of HDL-C has been viewed 
as a robust and independent CVD risk factor.1–4 In contrast, 
recent studies have failed to demonstrate that high HDL-C 
acquired naturally or pharmacologically is associated with 
reduced CVD risk.5–11,18 The current study does not refute the 
potential clinical relevance of HDL-C when direct compari-
son is made between isolated low and higher HDL-C levels. 
Within this context, higher HDL-C is associated with lower 
CVD risk, when other risk factors are constant.

The increased risk of CVD associated with low HDL-C is 
most evident in the presence of higher levels of other lipids or 
lipoproteins. This issue could not have been addressed in the 
original Framingham cohort because fasting TG levels were 
not routinely measured until ≈2 decades ago. Consequently, 
the Framingham offspring cohort provides a unique opportu-
nity to systematically investigate the effects of low HDL-C, 
both in isolation and within the framework of elevated TG 
and LDL-C. Although isolated low HDL-C using the lowest 
thresholds to define low TG and LDL-C (ie, <100 mg/dL) was 
uncommon (n=84, 2.3% of the study cohort), we observed 
similar trends with higher thresholds of the other risk fac-
tors that had larger cell sizes. We also found that increased 
TG and LDL-C appreciably raised CVD risk, consistent with 
prior studies demonstrating a 30% to 60% increase in CVD 
risk when LDL-C exceeded 130 mg/dL15 and a ≈10% to 20% 

increase in CVD risk when TG exceeded 150 mg/dL com-
pared with <100 mg/dL.19

Recently, TG has gained traction as an important bio-
marker of CVD risk with some proposing that TG-rich 
lipoproteins (eg, very low–density lipoprotein) and their cho-
lesterol-enriched remnants play a causative role in disease.20,21 
Specifically, TG-rich lipoproteins have been implicated in pro-
inflammatory signaling pathways, impairment of insulin sen-
sitivity, and upregulation of factors promoting thrombosis.22,23

Another novel finding in the current study was the asso-
ciation of TG levels on CVD risk across HDL-C and LDL-C 
subgroups (Figure). For example, at TG <100 mg/dL, CVD 
risk was low in the setting of high HDL-C and LDL-C 
<100 (or <130) mg/dL. However, the presence of higher 
TG (>200 mg/dL) within this subgroup was associated with 
increased CVD risk to the level shown by the subgroup with 
higher LDL-C and lower TG (<100 mg/dL). A similar pat-
tern emerged with low HDL-C. Therefore, TG levels essen-
tially reclassify risk of CVD irrespective of HDL-C. This is 
consistent with studies that have supported a direct role for 
TG-rich lipoproteins in promoting atherothrombosis24 and 
more recently defects in genes controlling TG metabolism, 
including APOC3, ANGPTL3, and ANGPTL4 that have 
been linked to reduced TG and are associated with reduced 
coronary calcification25 or reduced CVD risk.26–30 Moreover, 
a recent genome-wide association study identified common 
polymorphisms associated with TG to strongly influence risk 
of coronary disease,20 and post hoc analyses found TG to 

Table 1.  Baseline Characteristics of the Total Cohort, Isolated Low HDL-C (Referent), and Other HDL-C Groups

Total Cohort Low HDL-C High HDL-C

Referent

TG<100 <100 ≥100 ≥100 TG<100 <100 >100 >100

LDL<100 ≥100 <100 ≥100 LDL<100 ≥100 <100 ≥100

n=3590 n=84 n=300 n=137 n=853 n=388 n=1098 n=72 n=658

Age 41 (11) 46 (10) 49 (10) 53 (10) 53 (10) 46 (10) 51 (10) 52 (11) 54 (9)

Sex 1871 (52%) 57 (68%) 201 (67%) 66 (48%) 378 (44%) 253 (65%) 601 (55%) 38 (53%) 277 (42%)

BMI 26.8 (4.8) 26.1 (6.3) 26.5 (4.5) 29.4 (5.8) 29.0 (5.1) 23.8 (3.9) 25.4 (4.1) 26.6 (4.3) 27.5 (4.0)

SBP 125 (34) 118 (20) 120 (38) 125 (53) 130 (38) 118 (18) 123 (30) 130 (19) 130 (36)

Smokers 883 (25%) 21 (25%) 90 (30%) 28 (20%) 274 (32%) 81 (21%) 235 (21%) 20 (28%) 134 (20%)

Diabetes mellitus 162 (5%) 5 (6%) 5 (2%) 18 (13%) 70 (8%) 6 (2%) 22 (2%) 4 (6%) 32 (5%)

HDL-C, mean

 ��� Men 44 (11) 35 (4) 35 (3) 31 (4) 33 (4) 56 (13) 51 (10) 48 (8) 47 (7)

 ��� Women 56 (15) 44 (4) 44 (4) 39 (7) 41 (6) 67 (13) 66 (12) 65 (12) 61 (9)

LDL-C, mean

 ��� Men 135 (34) 83 (15) 136 (21) 86 (12) 145 (31) 86 (11) 137 (25) 86 (13) 152 (28)

 ��� Women 128 (36) 86 (12) 139 (30) 84 (14) 151 (33) 83 (12) 132 (25) 85 (13) 147 (33)

TG, median

 ��� Men 109 62 80 222 165 59 71 149 136

 ��� Women 87 65 75 163 154 56 67 127 128

BMI indicates body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; and TG, 
triglycerides.
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be more accurate than HDL-C in predicting recurrent CVD 
events after an acute coronary syndrome.19,31

The Framingham Heart Study was the first large epidemi-
ological study in the United States to demonstrate an inverse 
association between low HDL-C and coronary heart disease,32 
although the isolated low HDL-C phenotype was not specifi-
cally examined. The most direct application of this relation-
ship came from the National Cholesterol Education Program 
Adult Treatment Panel recommendations that HDL-C not 
be measured when total cholesterol is in the recommended 
range (<200 mg/dL).33 However, TG was not adjusted for in 
these analyses, and the prevalence of isolated low HDL-C was 
not reported. Another study of CVD survivors with desirable 
total cholesterol34 also found low HDL-C to be predictive of 
recurrent events but because mean LDL-C and TG levels were 
115±23 mg/dL and 124±65 mg/dL, respectively, many sub-
jects had concomitant dyslipidemia.

Our results are not intended to alter the large body of evi-
dence supporting HDL as inversely related to CVD risk based 
on its role in mediating reverse cholesterol transport. Indeed, 
recent studies suggest that HDL function may be more pre-
dictive of CVD risk compared with its cholesterol content,35 
as reflected by HDL-C levels. As such, functionality rather 
than the cholesterol content of HDL has been viewed as a 
better predictor of CVD risk based on the well-established 
anti-inflammatory, antioxidant, and endothelial restorative 
properties of HDL.36 In this regard, elevated TG and insulin 
resistance may both impair HDL function37–39 and predate the 
development of diabetes mellitus.40 Indeed, the prevalence of 

diabetes mellitus in Framingham Offspring subjects with low 
HDL-C, LDL-C <100, and TG <100 mg/dL was ≈50% lower 
compared with higher TG (Table 1) and also corresponded to 
the lower CVD rates observed (Table 2).

Limitations of the current study include the lack of addi-
tional measures (eg, apolipoprotein B or LDL particle con-
centration) that may provide incremental CVD risk prediction 
beyond conventional lipids and lipoproteins.41 As noted ear-
lier, there was also a relative paucity of cases with isolated low 
HDL-C using the stringent threshold (<100 mg/dL) for TG and 
LDL-C, although these data are consistent with the National 
Health and Nutrition Examination Survey (NHANES) III that 
reported isolated low HDL-C in only 4.8% of men and 8.7% 
of women over age 35 years.42

Conclusions
In the Framingham Offspring Study, low and high HDL-C 
phenotypes are not uniformly predictive of CVD risk. TG and 
LDL-C represent important modifiers of incident CVD risk at 
both ends of the HDL-C spectrum.

Sources of Funding
This study was supported in part by National Institutes of Health 
(NIH; HL094980) and a Veterans Affairs Merit Award (Dr Miller), 
Training Grant NIH (HL007751; Dr Predazzi), NIH (GM103534; J. 
Bartlett and Dr Williams), and NIH (HL106845 and HL057986; Dr 
Fazio).

Disclosures
None.

Table 2.  Effect Sizes of Low HDL-C and High HDL-C in Conjunction With Varying Levels 
of TG and LDL-C*

Low HDL-C High HDL-C

N OR CI N OR CI

TG<100, LDL<100 84 388 0.6 0.5–0.7

TG<100, LDL≥100 300 1.3 1.0–1.6 1098 0.7 0.5–1.0

TG≥100, LDL<100 137 1.3 1.1–1.5 72 0.7 0.6–1.0

TG≥100, LDL≥100 853 1.6 1.2–2.2 658 0.9 0.7–1.4

TG<100, LDL<130 213 929 0.6 0.5–0.7

TG<100, LDL≥130 171 1.3 1.1–1.5 557 0.7 0.6–1.0

TG≥100, LDL<130 414 1.3 1.0–1.5 255 0.7 0.5–1.0

TG≥100, LDL≥130 576 1.6 1.3–2.0 475 0.9 0.7–1.3

TG<150, LDL<100 133 434 0.6 0.5–0.7

TG<150, LDL≥100 660 1.3 1.0–1.7 1531 0.7 0.5–1.0

TG≥150, LDL<100 88 1.2 1.0–1.5 26 0.7 0.5–1.0

TG≥150, LDL≥100 493 1.6 1.2–2.2 225 0.9 0.6–1.3

TG<150, LDL<130 367 1095 0.6 0.5–0.7

TG<150, LDL≥130 426 1.3 1.1–1.6 870 0.8 0.6–1.0

TG≥150, LDL<130 260 1.2 1.0–1.5 89 0.7 0.5–1.0

TG≥150, LDL≥130 321 1.6 1.2–2.1 162 0.9 0.6–1.3

HDL-C indicates high-density lipoprotein cholesterol; LDL, low-density lipoprotein; LDL-C, low-density lipoprotein 
cholesterol; SBP, systolic blood pressure; T2DM, type 2 diabetes mellitus; and TG, triglycerides.

*Adjusted for age, sex, T2DM, SBP, smoking status, menopausal status, and LLT.
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       SUPPLEMENTAL MATERIAL 
Supplemental Table 1.   
Baseline characteristics of low and high HDL-C using selected cutpoints of TG (100 mg/dL) and LDL-C (130 mg/dL). 

 
Total Cohort   Low HDL-C       High HDL-C 

    Referent   
     TG<100 <100  >100  >100  TG<100 <100  >100  >100  
     LDL<130 >130  <130  >130  LDL<130 >130  <130  >130 
   (n=3590) (n=213)  (n= 171) (n=414)  (n=576)  (n=929)  (n=557)  (n=255)  (n=475) 
 
Age   41 (11)  47(11)  51(9)  53(10)  54(9)  48(10)  52(10)  53(11)   55(9) 
 
Gender   1871 (52%) 147(69%) 111(65%) 177(43%) 267(46%)          579(62%) 275(49%) 134(53%) 181(38%) 
  
BMI   26.8(4.8) 26.1(5.4) 26.8 (4.4) 29.4(5.8) 28.8(4.8) 24.5(4.0) 25.9(4.1) 27.1(4.5)  27.5(3.8) 
              
SBP   125 (34) 117 (43) 123 (20) 130 (34) 129 (44) 120 (25) 124(30)  128(39)  132(31) 
 
Smokers  883(25%) 54 (25%) 57 (33%) 112(27%) 190 (33%) 192(21%) 124(22%) 59(23%) 95(20%) 
 
Diabetes  162 (5%) 8 (4%)  2 (1%)  41(10%) 47 (8%)  11(1%)  17(3%)  12(5%)  24(5%) 
 
HDL-C, mean 
 Men  44 (11)  35(4)  36(3)  33(4)  34(4)   54(12)  50(9)  47(7)   47(7) 
 Women  56(15)  44(5)  44(4)  40(6)  41(5)  67(13)  64(12)  63(10)   60(9) 
 
LDL-C, mean 
 Men  135(34)  102(20)  150(16)  107(17)  161(27)  104(17)  154(19)  109(17)  162(24) 

  Women  128(36)  104(17)  159(26)  105(19)  165(29)  101(19)  153(20)  107(17)  163(28) 
 
TG, median 
 Men  109  74  81  184  162  64  74  138  136 
 Women    87  70  78  159  153  61  71  130  128 
  



Supplemental Table 2.   
Baseline characteristics of low and high HDL-C using selected cutpoints of TG (150 mg/dL) and LDL-C (100 mg/dL). 

 
Total Cohort   Low HDL-C       High HDL-C 

    Referent   
     TG<150 <150  >150  >150  TG<150 <150  >150  >150  
     LDL<100 >100  <100  >100  LDL<100 >100  <100  >100 
   (n=3590) (n=133)  (n=660)  (n=88)  (n=493)  (n=434)  (n=1531) (n=26)  (n=225) 
 
Age    41 (11)  48(11)  51(10)  54(10)  53(9)  46(10)  52(10)  55(10)   54(9) 
 
Gender   1871 (52%) 86(65%) 378(57%) 37(42%) 201(41%)          282(65%) 807(53%) 9(35%)  71(32%) 
  
BMI   26.8(4.8) 26.8(6.3) 27.5 (4.8) 30.2(5.4) 29.5(5.3) 24.1(4.0) 25.9(4.2) 27.5(3.6)  28.1(3.8) 
              
SBP    125 (34) 121 (20) 124 (36) 125 (65) 131 (40) 119 (18) 124(34)  138(21)  135(17) 
 
Smokers  883(25%) 31 (23%) 207 (31%) 18(20%) 157 (32%) 95(22%) 322(21%) 6(23%)  47(21%) 
 
Diabetes  162 (5%) 8 (6%)  25 (4%)  15(17%) 50 (10%) 8(2%)  41(3%)  2(8%)  13(6%) 
 
HDL-C, mean 
 Men  44 (11)  35(4)  35(3)  31(4)  33(4)   55(13)  50(9)  47(8)   46(6) 
 Women  56(15)  31(5)  44(5)  37(7)  40(6)  66(13)  64(12)  63(5)   61(10) 
 
LDL-C, mean 
 Men  135(34)  85(14)  144(30)  86(12)  143(29)  86(11)  142(26)  85(13)   153(31) 

  Women  128(36)  85(11)  144(30)  83(16)  152(35)  83(12)  135(26)  83(8)   152(44) 
 
TG, median 
 Men  109  91  113  249  202  61  82  208  189 
 Women    87  76  98  228  192  60  76  168  176 
  



Supplemental Table 3.   
Baseline characteristics of low and high HDL-C using selected cutpoints of TG (150 mg/dL) and LDL-C (100 mg/dL). 

 
Total Cohort   Low HDL-C       High HDL-C 

    Referent   
     TG<150 <150  >150  >150  TG<150 <150  >150  >150  
     LDL<130 >130  <130  >130  LDL<130 >130  <130  >130 
   (n=3590) (n=367)  (n=426)  (n=260)  (n=321)  (n=1095) (n=870)  (n=89)  (n=162) 
 
Age   41 (11)  49(11)  52(10)  53(10)  53(9)  49(10)  53(10)  54(10)   54(9) 
 
Gender   1871 (52%) 226(62%) 238(56%) 98(38%) 140(44%)          679(62%) 410(47%) 34(38%) 46(28%) 
  
BMI   26.8(4.8) 27.1(5.6) 27.6 (4.6) 30.0(5.8) 29.4(4.8) 24.9(4.2) 26.3(4.0) 27.4(4.0)  28.3(3.6) 
             
SBP   125 (34) 122 (35) 126 (33) 131 (41) 129 (47) 120 (30) 126(33)  136(17)  135(17) 
 
Smokers  883(25%) 100 (27%) 138 (32%) 66(25%) 109 (34%) 230(21%) 187(22%) 21(24%) 32(20%) 
 
Diabetes  162 (5%) 16 (4%)  17 (4%)  33(13%) 32 (10%) 18(2%)  31(4%)  5(6%)  10(6%) 
 
HDL-C, mean 
 Men  44 (11)  34(4)  35(3)  32(4)  33(4)   53(11)  49(8)  46(7)   46(6) 
 Women  56(15)  44(5)  43(5)  39(7)  40(6)  66(13)  63(11)  62(8)   60(10) 
 
LDL-C, mean 
 Men  135(34)  106(18)  157(28)  106(17)  160(24)  105(17)  157(20)  107(18)  164(27) 

  Women  128(36)  105(18)  161(26)  104(20)  168(31)  102(19)  155(21)  106(17)   172(42) 
 
TG, median 
 Men  109  104  113  216  202  69  88  197  187 
 Women    87   82  103  203  193  65  84  174  176 
 
 




