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Accumulating evidence from network
neuroscience indicates that g depends
on the dynamic reorganization of brain
networks, modifying their topology and
community structure in the service of
system-wide flexibility and adaptation.

Whereas crystallized intelligence
engages easy-to-reach network states
that access prior knowledge and
experience, fluid intelligence recruits
difficult-to-reach network states that
support cognitive flexibility and adap-
An enduring aim of research in the psychological and brain sciences is to
understand the nature of individual differences in human intelligence, examin-
ing the stunning breadth and diversity of intellectual abilities and the remark-
able neurobiological mechanisms from which they arise. This Opinion article
surveys recent neuroscience evidence to elucidate how general intelligence, g,
emerges from individual differences in the network architecture of the human
brain. The reviewed findings motivate new insights about how network topol-
ogy and dynamics account for individual differences in g, represented by the
Network Neuroscience Theory. According to this framework, g emerges from
the small-world topology of brain networks and the dynamic reorganization of
its community structure in the service of system-wide flexibility and adaptation.
tive problem-solving.

The capacity to flexibly transition
between networks states therefore
provides the basis for g – enabling
rapid information exchange across
networks and capturing individual dif-
ferences in information processing at a
global level.

This framework sets the stage for new
approaches to understanding the
neural foundations of g, examining
individual differences in brain network
topology and dynamics.
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Spearman’s Enigmatic g
Research in the psychological and brain sciences has long sought to understand the nature of
individual differences in human intelligence, examining the stunning breadth and diversity of
intellectual abilities and the remarkable cognitive and neurobiological mechanisms from which
they emerge. The foundations of modern research in this effort were established in the early
20th century by Charles Spearman, who developed the correlation method and applied this
technique to examine academic achievement within four branches of school study (i.e., English,
French, classics, and mathematics) [1,2].

Spearmandiscovered thatcorrelations inperformance reflectedcharacteristicsofeachdiscipline,
observing that ‘English and French, for instance, agree with one another in having a higher
correlation with Classics than with Mathematics’ [1]. Evidence that all branches of school study
werenot equally correlatedmotivatedSpearman toconclude that theywere influenced, inpart, by
mental abilities thatwere specific toeachdiscipline. Beyond identifying thecontributionof specific
mental abilities, Spearman observed that the correlations among the four branches of school
study were always positive. This finding, which is now well-established and named the positive
manifold, provided evidence that all cognitive tests measure something in common. Spearman
referred to this commonalityas thegeneral factor,g,which represents thecomponentof individual
differences variance that is common across all tests of mental ability.

These early findings motivated Spearman’s two-factor model which held that performance on
tests of mental ability jointly reflect (i) a specific factor, s, that is unique to each test, and (ii) a
general factor, g, that is common across all tests [1,2]. Contemporary research has further
elaborated Spearman’smodel to include an intermediate level of broad abilities that account for
the variance that is shared across similar domains of cognitive ability. For example, the well-
established Cattell–Horn–Carroll theory distinguishes between performance on tests of prior
knowledge and experience, referred to as crystallized intelligence, from those that require
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Figure 1. Hierarchical Structure of General Intelligence. At the level of specific abilities, people differ in scores on
individual achievement tests, which are all positively correlated. At the level of broad abilities, strong correlations among
tests measuring the same cognitive domain are present. At the level of general ability, people who perform well in one
domain also tend to perform well in others, and therefore a general factor (g) can be derived. Adapted, with permission,
from [6].
adaptive reasoning in novel situations, called fluid intelligence [3–5]. Taken together, the
specific, broad, and general factors of intelligence account for the hierarchical pattern of
correlations that are observed among tests of mental ability [3,6] (Figure 1).

Spearman’s discoveries ushered in a new era of research on individual differences in human
intelligence and uncovered fundamental mysteries about the nature and origins of g that stand
as one of themost significant and enduring challenges for modern research in the psychological
and brain sciences. Despite the fact that g represents the largest component of the common
factor variance, its psychological foundations have remained largely invisible and beyond the
reach of further scientific examination. The enigmatic nature of g arises from the fact that it is not
a measure of specific knowledge, skills, or strategies for problem-solving. These aspects of
task performance are simply a vehicle for the measurement of g. The general factor instead
accounts for individual differences in information processing at a global level. Thus, we cannot
understand the causal underpinnings of g by appealing to specific cognitive processes or by
directly examining the psychological tests fromwhich the general factor is derived. Research on
the nature and origins of g must therefore extend beyond psychology to examine the neuro-
biological mechanisms that shape individual differences in cognitive ability.

This Opinion article surveys recent evidence from the burgeoning field of network neuroscience
in an effort to elucidate how g – reflected in the positive manifold and the hierarchical pattern of
correlations among tests – emerges from individual differences in the network topology and
dynamics of the human brain.

Network Perspective
An enduring vision captured by early research in the neurosciences conceives of the human
brain as a dynamic network of interconnected elements – ‘an enchanted loomwhere millions of
flashing shuttles weave a dissolving pattern’ – revealing a complex topology echoed among the
2 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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stars, ‘as if the Milky Way entered upon a cosmic dance’ [7]. This celestial view seeks to
discover the rich constellation of elements and connections that comprise the human brain at
multiple levels of organization – from molecular foundations to higher-level systems – and
continues to inspire modern research in the psychological and brain sciences, raising new
possibilities for understanding the nature of human intelligence from a network perspective.

At the frontiers of research in this effort is the interdisciplinary field of network neuroscience [8,9]
which applies methods frommathematics, physics, and computer science to enable the formal
measurement and modeling of the interactions among network elements, thereby providing a
powerful new lens for examining the emergence of global network phenomena. This rapidly
developing field holds great promise for advancing research on the nature and origins of g,
which represents a global network phenomena par excellence. Indeed, the general factor
captures the variance that is common across all tests of mental ability and demonstrates
predictive validity across a broad landscape of socially important variables – accounting for
academic, professional, economic, and health outcomes [10].

It was therefore shortly after the discovery of g that Spearman’s contemporary, Godfrey
Thomson, proposed that the general factor represents a global network phenomenon
[11–13]. Thomson held that g emerges from the interaction among the many elements of
the brain, which he referred to as neural arcs or bonds [14,15]. According to Thomson’s
Sampling Theory of Mental Ability, each item on an achievement test samples a number of
these bonds [11–13]. He proposed that the degree of overlap among bonds accounted for the
correlation between tests and the resulting positive manifold. Thus, Thomson’s theory was the
first to show that Spearman’s discovery of the general factor of intelligence is consistent with a
network perspective.

Thomson’s legacy can be found in modern psychological theories which posit that g originates
from the mutual interactions among cognitive processes [16]. Individual differences in g are
known to be influenced, for example, by language abilities [10,17], which facilitate a wealth of
cognitive, social, and affective processes throughmutual interactions (i.e., reciprocal causation)
[18]. The central idea of the Mutualism Model is that change or growth in one aspect of mental
ability is (i) partially autonomous (owing to developmental maturation), and is also (ii) based on
growth in other areas (owing to the mutual interaction between cognitive processes). By
accounting for both the autonomous and interactive nature of cognitive processes, this model
is able to explain individual differences in the general factor of intelligence – accounting for the
positive manifold and the hierarchical pattern of correlations among tests [16].

Advances in network neuroscience have further sharpened Thomson’s notion of neural bonds,
revealing principles of brain organization that support (i) the modularity of cognitive processes
(enabling the autonomy of mental processes), and (ii) the dynamic reorganization of this
modular architecture in the service of system-wide flexibility and adaptation (enabling mutual
interactions between cognitive processes). The following sections review these principles of
brain organization and introduce a Network Neuroscience Theory for understanding individual
differences in the general factor of intelligence based on the small-world topology and network
dynamics of the human brain. This framework relies upon formal concepts from network
neuroscience and their application to understanding the neurobiological foundations of g.

Small-World Network
Through the incisive lens of his 19th century microscope, Ramón y Cajal observed that ‘the
neuron and its various components are simplymorphological adaptations governed by the laws
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of conservation for time, space, and material’ [19]. These principles provide the modern
foundation for understanding the organization of the human brain, which is fundamentally
designed for efficiency – to minimize the cost of information processing while maximizing the
capacity for growth and adaptation [19,20].

Minimization of cost is achieved by dividing the cortex into anatomically localized modules,
composed of densely interconnected regions or nodes. The spatial proximity of nodes within
each module reduces the average length of axonal projections (conservation of space and
material), thereby increasing signal transmission speed (conservation of time) and promoting
local efficiency [21]. This compartmentalization of function enhances robustness to brain injury
by limiting the likelihood of global system failure [22]. Indeed, the capacity of each module to
function and modify its operations without adversely effecting other modules enables cognitive
flexibility and therefore confers an important adaptive advantage [23,24].

Crucially, however, the deployment of modules for coordinated system-wide function requires
a network architecture that also enables global information processing. Local efficiency is
therefore complemented by global efficiency, which reflects the capacity to integrate informa-
tion across the network as a whole and represents the efficiency of the system for information
transfer between any two nodes. This complementary aim, however, creates a need for long-
distance connections that incur a high wiring cost. Thus, an efficient design is achieved by
introducing competing constraints on brain organization, demanding a decrease in the wiring
cost for local specialization and an opposing need to increase the connection distance to
facilitate global, system-wide function.

These competing constraints are captured by formalmodels of network topology [25] (Figure 2).
Local efficiency is embodied by a regular network or lattice in which each node is connected to
an equal number of its nearest neighbors, thus supporting direct local communication in the
absence of long-range connections. By contrast, global efficiency is exemplified by a random
network in which each node connects on average to any other node, including connections
between physically distant regions.

Recent discoveries in network neuroscience suggest that the human brain balances these
competing constraints by incorporating elements of a regular and random network to create a
Regular network Random networkSmall-world network 

Local efficiency
Specific abili�es

Global efficiency
General ability

Op�mal balance
Broad abili�es

Figure 2. Small-World Network. Human brain networks exhibit a small-world topology that represents a parsimonious
balance between a regular brain network, which promotes local efficiency, and a random brain network, which enables
global efficiency. Adapted, with permission, from [20].
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small-world topology [26–28]. A small-world network embodies (i) short-distance connections
that reduce the wiring cost (high local clustering) as well as (ii) long-distance connections that
provide direct topological links or short-cuts that promote global information processing (short
path length). Together, these features enable high local and global efficiency at relatively low
cost, thus providing a parsimonious architecture for human brain organization [29–31] and
capturing the modular (autonomous) and global (interactive) network topology that is essential
to general intelligence [16].

Research in network neuroscience has consistently observed that the topology of human
brain networks indeed exemplifies a small-world architecture, and this has been demon-
strated across multiple neuroimaging modalities including structural [32], functional [33–35],
and diffusion tensor MRI [36]. Emerging neuroscience evidence further indicates that general
intelligence is directly linked to characteristics of a small-world topology, demonstrating that
individual differences in g are associated with network measures of global efficiency [37,38].
Alterations in the topology of a small-world network have also been linked to multiple disease
states [39,40], stages of lifespan development [41], and pharmacological interventions [35],
establishing their importance for understanding human health and disease [42].
Network Neuroscience Theory
Recent advances in network neuroscience further elucidate the functions afforded by a small-
world architecture, motivating new insights about how brain network topology and dynamics
account for individual differences in specific and broad facets of general intelligence, repre-
sented by the Network Neuroscience Theory.
Modularity of Specific Mental Abilities
Functional specialization is built into the community structure of modules which comprise
densely interconnected regions that together perform specific cognitive operations. Modularity
therefore provides the basis for specialized information processing (Figure 1) – as originally
expressed in Spearman’s specific factor, s, which captures the variance in task performance
that is unique to specific tests of mental ability [1,2]. According to this view, the emergence of
functional specialization and autonomous information processing [16] originates from the drive
for local efficiency and the conservation of time, space, and material that it affords [19].

Small-World Topology of Broad Mental Abilities
Spearman’s model of general intelligence has been further elaborated in modern theories to
include an intermediate level of cognitive domains that are broader than specific abilities but are
less comprehensive than g [3–5] (Figure 1). Well-established broad abilities include crystallized
intelligence, which underlies performance on tests of previously acquired knowledge, and fluid
intelligence, which reflects the capacity for adaptive reasoning in novel environments. From a
network neuroscience perspective, the formation of broad abilities reflects the competing
forces of local versus global efficiency, resulting in an economic tradeoff in which locally efficient
modules are embedded within modules to create a broader set of cognitive abilities whose
topology enables a more globally efficient, small-world network [26–28] (Figure 2).

The functional topology and community structure of the human brain have been extensively
studied through the application of resting-state functional MRI which examines spontaneous
low frequency fluctuations of the blood oxygen-level dependent (BOLD) signal. This method
demonstrates coherence in brain activity across spatially distributed regions to reveal a core set
of intrinsic connectivity networks (ICNs; Figure 3A) [34,43–50]. Functional brain networks
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 5
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Figure 3. Intrinsic Connectivity Networks (ICNs) and Network Flexibility. (A) Functional networks drawn from a large-scale meta-analysis of peaks of brain
activity for a wide range of cognitive, perceptual, and motor tasks. (i) A graph-theoretic embedding of the nodes. Similarity between nodes is represented by spatial
distance, and nodes are assigned to their corresponding network by color. (ii) and (iii) The nodal and voxel-wise network distribution in both hemispheres. Adapted, with
permission, from [49]. (B) (i) Illustrates the percent of regionswithin each intrinsic connectivity network that can transition tomany easy-to-reach network states, primarily
within the default mode network. (ii) Illustrates the percent of regions within each intrinsic connectivity network that can transition to many difficult-to-reach network
states, primarily within cognitive control networks. Adapted, with permission, from [61].
largely converge with the structural organization of networks measured using diffusion tensor
MRI [36,51,52], together providing a window into the community structure from which global
information processing and broad facets of intelligence emerge. Instead of originating from a
specific brain network, a growing body of evidence suggests that individual differences in
6 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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crystallized and fluid intelligence reflect global, system-wide dynamics [37,38,53] and the
capacity to flexibly transition between network states.

Network Dynamics of Crystallized Intelligence
Global information processing is enabled by the hierarchical community structure of the human
brain, where modules are embedded within modules to form complex, interconnected net-
works [54,55]. This infrastructure is supported, in part, by nodes of high connectivity or hubs
[44,56,57]. These regions serve distinct roles either as provincial hubs, which primarily connect
to nodes within the same module, or as connector hubs, which instead provide a link between
distinct modules [58]. Hubs are therefore essential for transferring information within and
between ICNs, and provide the basis for mutual interactions between cognitive processes
[16,59]. Indeed, strongly connected hubs together comprise a rich-club network that mediates
almost 70% of the shortest paths throughout the brain and is therefore important for global
network efficiency [60].

By applying engineering methods to network neuroscience, research from the field of network
control theory further elucidates how brain network dynamics are shaped by the topology of
strongly connected hubs, examining their capacity to act as drivers (network controllers) that
move the system into specific network states [61]. According to this approach, the hierarchical
community structure of the brain may facilitate or constrain the transition from one network
state to another, for example by enabling a direct path that requires minimal transitions (an
easy-to-reach network state) or a winding path that requires many transitions (a difficult-to-
reach network state). Thus, by investigating how the brain is organized to form topologically
direct or indirect pathways (comprising short- and long-distance connections), powerful
inferences about the flexibility and dynamics of ICNs can be drawn.

Recent studies applying this approach demonstrate that strongly connected hubs enable a
network to function within many easy-to-reach states [61], engaging highly accessible repre-
sentations of prior knowledge and experience that are a hallmark of crystallized intelligence [3–
5]. Extensive neuroscience data indicate that the topology of brain networks is shaped by
learning and prior experience – reflecting the formation of new neurons, synapses, connec-
tions, and blood-supply pathways that promote the accessibility of crystallized knowledge [62–
64]. The capacity to engage easy-to-reach network states – and therefore to access crystal-
lized knowledge – is exhibited by multiple ICNs, most prominently for the default mode network
[61,65] (Figure 3B). This network is known to support semantic and episodic memory repre-
sentations that are central to crystallized intelligence [66–69] and to provide a baseline resting
state from which these representations can be readily accessed. Thus, according to this view,
crystallized abilities depend on accessing prior knowledge and experience through the engage-
ment of easily reachable network states, supported, for example, by strongly connected hubs
within the default mode network [61,65].

Network Dynamics of Fluid Intelligence
Although the utility of strongly connected hubs is well-recognized, a growing body of evidence
suggests that they may not fully capture the higher-order structure of brain network organiza-
tion and the flexibility of information processing that this global structure is known to afford [70].
Research in network science has long appreciated that global information processing depends
on the formation of weak ties, which comprise nodes with a small number of connections
[26,27,71]. By analogy to a social network, a weak tie represents a mutual acquaintance that
connects two groups of close friends, providing a weak link between multiple modules. In
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 7
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contrast to the intuition that strong connections are optimal for network function, the intro-
duction of weak ties is known to produce amore globally efficient small-world topology [71,72].

Research investigating their role in brain network dynamics further indicates that weak con-
nections enable the system to function within many difficult-to-reach states [61], reflecting a
capacity to adapt to novel situations by engaging mechanisms for flexible, intelligent behavior.
Unlike the easily reachable network states underlying crystallized intelligence, difficult-to-reach
states rely on connections and pathways that are not well-established from prior experience –

instead requiring the adaptive selection and assembly of new representations that introduce
high cognitive demands. The capacity to access difficult-to-reach states is exhibited bymultiple
ICNs, most notably the frontoparietal and cingulo-opercular networks [61] (Figure 3B).
Together, these networks are known to support cognitive control, enabling the top-down
regulation and control of mental operations (engaging the frontoparietal network) in response to
environmental change and adaptive task goals (maintained by the cingulo-opercular network)
[73].

Converging evidence from resting-state fMRI and human lesion studies strongly implicates the
frontoparietal network in cognitive control, demonstrating that this network accounts for
individual differences in adaptive reasoning and problem-solving – as assessed by fMRI
measures of global efficiency [37,38,74] and structural measures of brain integrity [75–79].
From this perspective, the role of the frontoparietal network in fluid intelligence reflects a global,
system-wide capacity to adapt to novel environments, engaging cognitive control mechanisms
that guide the dynamic selection and assembly of mental operations required for goal achieve-
ment [80]. Thus, rather than attempting to localize individual differences in fluid intelligence to a
specific brain network, this framework instead suggests that weak connections within the
frontoparietal and cingulo-opercular networks [38,74] drive global network dynamics – flexibly
engaging difficult-to-reach states in the service of adaptive behavior and providing a window
into the architecture of individual differences in general intelligence at a global level.

Network Dynamics of General Intelligence
Recent discoveries in network neuroscience motivate a new perspective about the role of
global network dynamics in general intelligence – breaking away from standard theories that
account for individual differences in g on the basis of a single brain region [81], network [77,82],
or the overlap among specific networks [83] (Box 1). Accumulating evidence instead suggests
that network flexibility and dynamics are crucial for the diverse range of mental abilities
underlying general intelligence.

According to Network Neuroscience Theory, the capacity of ICNs to transition between
network states is supported by their small-world topology – which enables each network to
operate in a critical state that is close to a phase transition between a regular and random
network [84,85] (Figure 2). The transition toward a regular network configuration is associated
with the engagement of specific cognitive abilities, whereas the transition toward a random
network configuration is linked to the engagement of broad or general abilities (Figure 2).

Instead of reflecting a uniform topology of dynamic states, emerging evidence suggests that
ICNs exhibit different degrees of variability [86,87] – elucidating the network architecture that
supports flexible, time-varying profiles of functional connectivity (Figure 4). Connections
between modules are known to fluctuate more than connections within modules, demonstrat-
ing greater dynamic variability for connector hubs relative to provincial hubs [88,89]. Thus, the
modular community structure of specific mental abilities provides a stable foundation upon
8 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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Box 1. Cognitive Neuroscience Theories of Human Intelligence

Cognitive neuroscience theories of human intelligence propose that g originates from individual differences in functionally localized regions or networks of the brain.
Early studies investigating the neurobiology of g implicated the lateral prefrontal cortex (PFC) [81,102], motivating an influential theory based on the role of this region
in cognitive control functions for intelligent behavior [103]. The later emergence of network-based theories reflected an effort to examine the neurobiology of
intelligence through a wider lens, accounting for individual differences in g on the basis of broadly distributed networks. The landmark Parietofrontal Integration
Theory (P-FIT) appeals to the frontoparietal network to explain individual differences in intelligence [75], proposing that g reflects the capacity of this network to
evaluate and test hypotheses for problem-solving [77]. A central feature of the P-FIT model is an emphasis on the integration of knowledge between frontal and
parietal cortex, afforded by white-matter fiber tracks that enable efficient communication among regions. Evidence to support the role of the frontoparietal network
role in a broad range of problem-solving tasks later motivated the Multiple-Demand (MD) Theory, which proposes that this network underlies attentional control
mechanisms for goal-directed problem-solving [82]. Finally, the Process Overlap Theory represents a recent network approach that accounts for individual
differences in g by appealing to the spatial overlap among specific brain networks, reflecting the shared cognitive processes underlying g [83] (cf Thompson [11–13]).
Thus, contemporary theories suggest that individual differences in g originate from functionally localized processes within specific brain regions or networks (Table I).

Network Neuroscience Theory adopts a new perspective, proposing that g originates from individual differences in the system-wide topology and dynamics of the
human brain. According to this approach, the small-world topology of brain networks enables the rapid reconfiguration of their modular community structure,
creating globally coordinated mental representations of a desired goal-state and the sequence of operations required to achieve it (cf [104,105]). The capacity to
flexibly transition between network states therefore provides the foundation for individual differences in g, engaging (i) easy-to-reach network states to construct
mental representations for crystallized intelligence based on prior knowledge and experience, and accessing (ii) difficult-to-reach network states to construct mental
representations for fluid intelligence based on cognitive control functions that guide adaptive reasoning and problem-solving (see Figure 3B in main text). Thus,
network flexibility and dynamics provide the foundation for general intelligence – enabling rapid information exchange across networks and capturing individual
differences in information processing at a global level.

Table I. Summary of Cognitive Neuroscience Theories of Human Intelligence

Functional localization System-wide topology and dynamics

Primary region Primary network Multiple networks Small-world topology Network flexibility Network dynamics

Lateral PFC Theory [103] U x x x x x

P-FIT Theory [75] x U x x x x

MD Theory [82] x U x x x x

Process Overlap Theory [83] x x U x x x

Network Neuroscience Theory x x U U U U
which the more flexible, small-world topology of broad mental abilities is constructed [90]. The
dynamic flexibility of ICNs underlying broad mental abilities (Figure 3B) is known to reflect their
capacity to access easy- versus difficult-to-reach states, with greatest dynamic flexibility being
exhibited by networks that are strongly associated with fluid intelligence, particularly the
frontoparietal network (Figure 4) [53,91,92].

Research in network neuroscience alsomotivates new hypotheses about lifespan development
and generational change in crystallized and fluid intelligence. Awealth of evidence indicates that
fluid abilities selectively decline in older adulthood, while crystallized intelligence is largely
preserved [93]. Population studies have also shown that fluid intelligence is more sensitive
to generational change than is crystallized intelligence, and systematic increases in fluid abilities
are observed across generations [94–96]. Together, these findings suggest that fluid intelli-
gence is influenced by cognitive decline and generational change to a greater extent than is
crystallized intelligence. Network Neuroscience Theory accounts for this pattern of findings on
the basis of global network dynamics, whereby fluid intelligence exhibits higher variability with
age and across generations due to greater network flexibility (Figure 3B) and higher dynamic
connectivity than crystallized intelligence (Figure 4A). According to this view, age-related
decline in fluid intelligence is due to alterations in the network topology and dynamics of
the aging brain [97], whereas generational change has a beneficial effect on fluid intelligence
owing to improvements in education and lifestyle factors, such as diet and nutrition [98,99], that
Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 9
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Figure 4. Dynamic Functional Connectivity. (A) Standard deviation in resting-state blood oxygen level-dependent (BOLD) fMRI reveals regions of low (blue),
moderate (green), and high (red) variability. (B) Dynamic functional connectivity matrices are derived by windowing time-series and estimating the functional connectivity
between pairs of regions. Instead of remaining static, functional connectivity matrices demonstrate changes over time, revealing dynamic variability in the connectivity
profile of specific brain regions. (C) Dynamic functional connectivity matrices can be used to assess the modular structure of the network at each timepoint, revealing
regions of low or high temporal dynamics. Adapted, with permission, from [87].
are known to enhance network flexibility. This framework also motivates new predictions about
the role of network dynamics in learning, suggesting that the early stages of learning depend on
adaptive behavior and the engagement of difficult-to-reach network states [100], followed by
the transfer of skills to easily reachable network states as knowledge and experience are
acquired to guide problem-solving [101]. Indeed, recent findings suggest that the development
of fluid abilities from childhood to young adulthood is associated with individual differences in
the flexible reconfiguration of brain networks for fluid intelligence [100].

In summary, Network Neuroscience Theory proposes that general intelligence depends on the
dynamic reorganization of ICNs – modifying their topology and community structure in the
service of system-wide flexibility and adaptation. Whereas crystallized intelligence engages
easy-to-reach network states that access prior knowledge and experience, fluid intelligence
instead recruits difficult-to-reach network states that support cognitive flexibility and adaptive
10 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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Outstanding Questions
What are the neurobiological founda-
tions of individual differences in g?
Does the assumption that g originates
from a primary brain region or network
remain tenable, or should theories
broaden the scope of their analysis
to incorporate evidence from network
neuroscience on individual differences
in the global topology and dynamics of
the human brain?

To what extent does brain network
dynamics account for individual differ-
ences in specific, broad, and general
facets of intelligence? To gain a better
understanding of this issue, a more
fundamental characterization of net-
work dynamics will be necessary.

In what respects are ICNs dynamic,
how do strong and weak connections
enable specific network transforma-
tions, and what mental abilities do net-
work dynamics support?

How does the structural topology of
ICNs shape their functional dynamics
and the capacity to flexibly transition
between network states? To what
extent is our current understanding
of network dynamics limited by an
inability to measure more precise tem-
poral profiles or to capture higher-
order representations of network
topology at a global level?

How can we facilitate interdisciplinary
investigations of human intelligence
from a network neuroscience perspec-
tive, integrating research across psy-
chology, neuroscience, mathematics,
physics, and computer science?
problem-solving (Figure 3B). Thus, the capacity to flexibly transition between network states
provides the foundation for individual differences in g – supporting the rapid exchange of
information across networks and capturing individual differences in cognitive processing at a
global level.

Concluding Remarks
Network Neuroscience Theory raises new possibilities for understanding the nature and
mechanisms of human intelligence, suggesting that interdisciplinary research in the emerging
field of network neuroscience can advance our understanding of one of the most profound
problems of intellectual life: how individual differences in general intelligence –which give rise to
the stunning diversity and uniqueness of human identity and personal expression – originate
from the network organization of the human brain. The reviewed findings elucidate the global
network architecture underlying individual differences in g, drawing upon recent studies
investigating the small-world topology and dynamics of human brain networks. Instead of
attributing individual differences in general intelligence to a single brain region [81], network [77],
or the overlap among specific networks [83], the proposed theory instead suggests that general
intelligence depends on the dynamic reorganization of ICNs – modifying their topology and
community structure in the service of system-wide flexibility and adaptation (Box 1). This
framework sets the stage for new approaches to understanding individual differences in general
intelligence, examining the global network topology and dynamics of the human brain – from
the level of molecules and synapses to neural circuits, networks, and systems (see Outstanding
Questions). By investigating the foundations of general intelligence in global network dynamics,
the burgeoning field of network neuroscience will continue to advance our understanding of the
cognitive and neural architecture from which the remarkable constellation of individual differ-
ences in human intelligence emerge.
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