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Abstract
Objective T o investigate whether a whole grain diet 
alters the gut microbiome and insulin sensitivity, as well 
as biomarkers of metabolic health and gut functionality.
Design  60 Danish adults at risk of developing 
metabolic syndrome were included in a randomised 
cross-over trial with two 8-week dietary intervention 
periods comprising whole grain diet and refined grain 
diet, separated by a washout period of ≥6 weeks. The 
response to the interventions on the gut microbiome 
composition and insulin sensitivity as well on measures 
of glucose and lipid metabolism, gut functionality, 
inflammatory markers, anthropometry and urine 
metabolomics were assessed.
Results  50 participants completed both periods with a 
whole grain intake of 179±50 g/day and 13±10 g/day 
in the whole grain and refined grain period, respectively. 
Compliance was confirmed by a difference in plasma 
alkylresorcinols (p<0.0001). Compared with refined 
grain, whole grain did not significantly alter glucose 
homeostasis and did not induce major changes in the 
faecal microbiome. Also, breath hydrogen levels, plasma 
short-chain fatty acids, intestinal integrity and intestinal 
transit time were not affected. The whole grain diet did, 
however, compared with the refined grain diet, decrease 
body weight (p<0.0001), serum inflammatory markers, 
interleukin (IL)-6 (p=0.009) and C-reactive protein 
(p=0.003). The reduction in body weight was consistent 
with a reduction in energy intake, and IL-6 reduction was 
associated with the amount of whole grain consumed, in 
particular with intake of rye.
Conclusion C ompared with refined grain diet, whole 
grain diet did not alter insulin sensitivity and gut 
microbiome but reduced body weight and systemic low-
grade inflammation.
Trial registration number NCT  01731366; Results.

Introduction
Whole grain consumption associates with decreased 
risk of several lifestyle-related diseases including 
type 2 diabetes and cardiovascular diseases.1 2 Studies 
suggest that consumption of whole  grain benefi-
cially influences glucose metabolism,3 adiposity,4 
blood lipids5 and markers of inflammation.6 A 
putative mediator of these effects is the gut micro-
biota.7 Whole  grains are rich in phenolic phyto-
chemicals and dietary fibres that are metabolised 
by the gut microbiota into short-chain fatty acids 
(SCFA),8 which have been linked to secretion of 
gut hormones,9 glucose and lipid metabolism,10 11 
immune homeostasis12 and gut permeability.13 Only 
a limited number of human interventions have 
related whole  grain-induced improvements on 
host metabolism with faecal microbiota composi-
tion,14–19 and so far the results have been inconclu-
sive. This may be a result of large interindividual 
differences in microbiota composition,16 20 lack of 
gut microbiota exploration at high taxonomic and 
functional resolution level, high variability in back-
ground diet or lack of statistical power. Currently, 
it is not established to what extent beneficial effects 
of whole grain consumption are associated with the 
gut microbiota.

The present study thus aimed to address the 
hypothesis that replacing refined grains with whole 
grains improves insulin sensitivity and alters the gut 
microbiome (primary outcomes) and biomarkers of 
metabolic health and gut functionality (secondary 
outcomes). This was investigated in a randomised 
cross-over trial comparing the effects of a mixed 
whole grain diet to an equivalent control diet based 
on refined grains.
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Subjects and methods
Study participants
A total of 60 adults were included in the study.21 The partici-
pants were between 20 and 65 years old and weight stable with a 
body mass index of 25–35 kg/m2 and/or increased waist circum-
ference (≥94 cm for men and ≥80 cm for women). Additionally, 
they fulfilled at least one of the following criteria: non-diabetic 
dysglycaemia (fasting plasma glucose 6.1–6.9 mmol/L), dyslipi-
daemia (fasting serum high-density lipoprotein (HDL) choles-
terol ≤1.03 mmol/L for men and  ≤1.29 mmol/L for women) 
or hypertension (systolic blood pressure (BP) >130 mm Hg 
or medical treatment of hypertension). Exclusion criteria are 
described in details elsewhere.21

Study protocol
The study was a randomised, controlled cross-over trial with two 
8-week dietary intervention periods comprising a whole  grain 

diet and a refined grain diet in random order, separated by a 
washout period of at least 6 weeks (see  online supplementary 
figure S1). Using a variable block size, the randomisation list was 
generated by an investigator without contact to the participants, 
and a dietitian allocated participants to sequence of intervention 
matching the list of participant identifications with the randomi-
sation list. It was not feasible to blind during the intervention, 
but participants and investigators involved in outcome assess-
ment were blinded until the first examination day and during 
sample analysis and the initial data analysis. The study aimed 
at a daily consumption of ≥75 g/day of whole grains during the 
whole  grain intervention and of <10 g/day during the refined 
grain intervention. The study examinations were initiated in July 
2012 and completed in November 2013 and were conducted at 
the Department of Nutrition, Exercise and Sports at the Univer-
sity of Copenhagen, Denmark. It was approved by the Municipal 
Ethical Committee of the Capital Region of Denmark in accor-
dance with the Helsinki Declaration (H-2-2012-065) and the 
Data Protection Agency (2007-54-0269) and registered at www.​
clinicaltrials.​gov (NCT01731366). The detailed description of 
the design and methods, the study flow, as well as hypotheses and 
rationales of the intervention have previously been described.21

Intervention diets
Study products
During the two dietary interventions, participants were provided 
with a selection of whole  grain or comparable refined grain 
products (see online supplementary table S1). Participants were 
instructed to substitute all cereals in their diet with the study 
products and to consume these in an ad libitum manner. Prod-
ucts were considered as whole  grain if they consisted of the 
intact, ground, cracked or flaked caryopses, where the starchy 
endosperm, germ and bran are present in the same relative 
proportions as in the intact caryopsis according to the defini-
tion proposed by the HEALTHGRAIN consortium in 2013.22 All 
whole grain products contained a minimum of 50% whole grain 
per dry matter. Analysis of study products for alkylresorcinols, 
resistant starch, arabinoxylan and monosaccharide content are 
described in online supplementary materials.

Dietary assessments
The daily consumption of study dietary products (amount and 
type) as well as any deviations from the dietary instructions were 
registered in a study diary throughout both interventions. The 
study diary was used to calculate absolute consumption of the 
dietary products during the intervention and to assess compli-
ance. Compliance was furthermore evaluated by measuring 
fasting concentrations of plasma alkylresorcinols, which are 
biomarkers of whole  grain intake.23 Total dietary intake to 
determine whole  grain, total energy and macronutrient intake 
was assessed by a 4-day precoded dietary registration, developed 
by the National Food Institute at the Technical University of 
Denmark.24 The diet registration was performed on 2 weekdays 
and 2 weekend days at baseline, reflecting habitual diet and at 
the end of each of the interventions to evaluate potential changes 
in diet beyond the intervention.

Experimental procedures
Examinations were conducted in the beginning and in the end of 
each intervention. On each of the four examination visits, partic-
ipants arrived in the morning after having fasted for ≥10 hours 
(h) and abstained from strenuous physical activity for ≥10 hour 
and alcohol consumption for ≥24 hour. In addition, participants 

Significance of this study

What is already known on this subject?
►► In epidemiological studies, whole grain consumption has 
repeatedly been associated with decreased risk of lifestyle-
related diseases, such as type-2 diabetes and cardiovascular 
diseases.

►► Accumulating evidence from rodent studies points towards 
the gut microbiota as a mediator of dietary impact on 
metabolic health.

►► Microbial degradation of whole grains, rich in dietary fibres, 
leads to production of short-chain fatty acids and phenolic 
phytochemicals, which may exert beneficial effects on the 
host metabolism.

►► Human dietary intervention studies show inconclusive results 
on the effect of whole grain intake on the gut microbiota and 
metabolic health.

What are the new findings?
►► Intake of a diet rich in whole grains was associated with 
reduced energy intake and body weight and circulating 
markers of inflammation in adults at risk of developing 
metabolic syndrome.

►► Reduction in fasting serum concentrations of interleukin 6 
was directly associated to the amount of whole grain intake, 
in particular to rye intake.

►► Compared with the refined grain diet, the whole grain-
rich diet did not significantly modify faecal microbiome 
composition and metabolic potential as assessed by shotgun 
sequencing-based metagenomics and 16S rRNA amplicon 
profiling, fasting plasma concentrations of short-chain fatty 
acids, urine metabolomics or measures of intestinal integrity.

How might it impact on clinical practice in the foreseeable 
future?

►► Whole grain consumption significantly reduces energy intake 
and body weight in overweight adults, emphasising the 
feasibility of replacing refined grain foods with whole grains 
in weight management strategies.

►► Whole grain consumption has beneficial effects on blood 
markers of subclinical inflammation in adults at risk of 
developing metabolic syndrome, and higher intake of whole 
grains should be encouraged in those at risk of inflammation-
related diseases.
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were asked to avoid smoking and tooth brushing on the morn-
ings of the examination days.

Assessment of metabolic markers, anthropometry and blood 
pressure
On each examination visit, fasting morning blood samples were 
taken in supine position after a 10 min rest (t=0 min). Both serum 
and plasma fractions were obtained from the blood samples and 
immediately stored at −80°C until analyses. Biochemical anal-
yses of blood samples including markers of glucose and lipid 
metabolism, hormones and inflammatory markers as well as 
quantification of plasma alkylresorcinols and SCFA are described 
in the online supplementary materials. The methodologies for 
the anthropometric and BP measurements are also described in 
the online lsupplementary materials.

Postprandial tests
In addition to the fasting blood samples, postprandial samples 
were obtained (t=30, 60, 120 and 180 min) after ingestion of a 
standardised breakfast, consisting of white wheat bread, a pastry, 
butter, jam, cheese and 200 mL water (~3000 kJ, 52.6% of the 
energy (E%) from fat, 39.7 E% carbohydrates, 7.8 E% protein) 
and a drink containing lactulose (5 g) and mannitol (2 g). Breath 
hydrogen was measured in exhaled breath twice at fasting, and 
at the indicated times after the standardised breakfast as a proxy 
measure of colonic fermentation using a validated handheld 
Gastro+Gastrolyzer (Bedfont Scientific, Rochester, UK).

Gut permeability assessment
On arrival on each examination day, participants emptied their 
bladder. Urine was collected for 4 hours after the standardised 
breakfast and the lactulose-mannitol containing drink. Urine 
was stored in the fridge during collection, pooled, mixed and 
aliquoted into 2.0 mL tubes and stored at −80°C. The percentage 
of excreted lactulose and mannitol in urine was measured as 
described in online supplementary materials. Gut permea-
bility was estimated based on the ratio of urinary lactulose and 
mannitol. In addition, fasting serum concentrations of zonulin, 
a suggested biomarker of gut barrier function,25 were measured 
using IDK Zonulin ELISA kit (Immundiagnostik AG, Bensheim, 
Germany). The lower limit of detection was 0.22 ng/mL.

Faecal shotgun sequencing-based metagenomics and 16S rRNA 
amplicon profiling
Faecal samples were routinely collected on the morning of the 
examination day and stored at 5°C for maximally 24 hours before 
being homogenised in sterile water 1:1, aliquoted to cryotubes 
and stored at −80°C. Microbial DNA was extracted from the 
faecal samples as previously described26 27 and subjected to both 
16S rRNA gene sequencing as described in Roager et al28 and 
shotgun metagenomic sequencing with an average seven gigab-
ases readout per sample (Illumina 100 bp pair end) as described 
in online supplementary materials. The microbial sequences 
obtained from shotgun metagenomics were mapped to the inte-
grated catalogue of reference genes of the human gut micro-
biome.29 The genes were coabundance binned into metagenomic 
species30 from hereon referred to as species. The species were 
taxonomically annotated by sequence similarity to known refer-
ence genomes, which were downloaded as described by Nordahl 
et al.31 Microbial species and gene diversity, respectively, were 
calculated by means of Shannon index and richness, which is 
the number of observations per sample. To assign functions to 
genes, all genes were annotated to carbohydrate active enzymes 

(CAZy) from the CAZy database32 and to prokaryotic Kyoto 
Encyclopaedia of Genes and Genomes orthologies (KOs).33 Only 
species, CAZy and KOs detected in at least 10 individuals were 
included in statistical analyses. Microbiome data of one faecal 
sample from one individual were excluded, as the microbiome 
was significantly affected by intake of antibiotics. Details of the 
metagenomic sequence analysis are available in online supple-
mentary materials.

Measurement of intestinal transit time
For six consecutive days prior to the examination visit 1, 2 
and 4, the participants ingested 24 radiopaque markers in the 
morning on a daily basis to ensure saturation. On the examina-
tion day, abdominal radiographs were performed in the after-
noon approximately 30 hours after ingestion of the last markers. 
Intestinal transit time was estimated based on number of visible 
markers on the obtained X-ray as previously described.28

Urinary metabolic profiling
A complete set of urine samples were available from 48 partic-
ipants. Exploratory non-targeted urinary metabolic profiling 
was performed by ultraperformance liquid chromatography 
mass spectrometry (UPLC-MS) with a quality control (QC) 
sample injected once for every 10 urine samples as previously 
described.28 Furthermore, all urine samples were derivatised 
using methyl chloroformate and profiled by gas chromatography 
mass spectrometry (GC-MS), enabling the relative quantifica-
tion of amino and non-amino organic acids (78 metabolites).34 
Details on the GC-MS analysis are available in online supple-
mentary material. The coefficient of variance (CV)% of the 
metabolites in the QC samples measured by UPLC-MS in posi-
tive (1293 features) and negative (218 features) ionisation mode 
was on average 7% and 11%, respectively, whereas the CV% 
of the metabolites in the QC samples measured by GC-MS was 
12% on average. The metabolites were identified according to 
four different identification levels as described by the Metabo-
lomics Standard Initiative.35 Metabolite identification details are 
available in the online supplementary materials.

Statistical analyses
All statistical analyses were performed in R version 3.1. Sample 
size estimation was based on a 0.25 difference in the homeostatic 
model assessment for insulin resistance (HOMA-IR) with an SD 
of 0.6,21 which at a 5% significance level and with 85% statis-
tical power, required a sample size of 51 completing participants 
and a total of 60 with allowance of a 15% dropout. (See further 
details in the  online supplementary materials). Available  case 
analyses were carried out for all outcomes. The effects of the 
intervention on all outcomes were analysed using a linear mixed 
model with subject-specific and subject-within-visit random 
effects. The model included a treatment–visit interaction and 
adjustment for age and gender. The treatment–visit interaction 
term was defined to have eight levels including all combinations 
of treatment (two levels) and visit (four levels: visit 1=baseline 
1, visit 2, visit 3=postrandomisation baseline 2, visit 4). For 
physiological outcomes, a common baseline effect (at visit 1) 
was assumed for both treatments, as it should be the same for all 
participants due to randomisation (corresponding to an interac-
tion with seven levels). In addition, adjustment for body weight 
was included to ensure that changes in inflammatory markers 
were not associated with changes in body weight. Model assump-
tions on variance homogeneity and normality were assessed 
by visual inspection of residual plots, histograms and normal 
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probability plots. Data not normally distributed including urine 
metabolome and faecal microbiome data were log transformed 
before analysis by the linear mixed model. Both prerandomis-
ation and postrandomisation baseline measurements, obtained 
for visit 1 and 3, respectively, were considered to be part of the 
outcome to adjust for putative carry-over effects.36 For period 1, 
the treatment effect was estimated as the change from baseline at 
visit 1. For period 2, postrandomisation baseline measurements 
allowed estimation of a treatment effect during period 2 to be 
calculated as the change from the postrandomisation baseline at 
visit 3. The overall treatment effect was estimated as the average 
of the period 1 and period 2 treatment effects, and the differ-
ential change was estimated as the difference between the two 
estimated intervention effects.

Urine metabolome and faecal microbiome p  values were 
adjusted for multiple comparisons using the Benjamini-Hochberg 
false discovery rate (FDR).37 For comparison of endpoints of the 
two periods, a paired t-test or a Wilcoxon matched pairs test 
was used depending on whether the data were normally distrib-
uted. For comparison of data with only three time points avail-
able (dietary intake based on food diaries and intestinal transit 
time), one-way repeated measures analysis of variance (ANOVA) 
followed by Tukey’s Multiple Comparison test were used. 
For postprandial data (plasma glucose, serum insulin, serum-
free  fatty acids (FFA), plasma glucagon-like peptide (GLP)−1, 
plasma GLP-2 and breath hydrogen) collected with repeated 
measurements total area under the curve (AUC) was calculated 
by the trapezoidal rule as the entire area above zero. Post-pran-
dial AUC values were compared between treatment groups 
using the linear mixed model. Correlations between changes in 
whole grain intake and changes in serum interleukin (IL)−6 and 
C-reactive protein (CRP), respectively, and correlations between 
changes in body weight, free fat mass, sagittal abdominal diam-
eter (SAD) and changes in energy intake, as well as correlations 

between concentrations of urinary metabolites and whole grain 
intake at endpoints were calculated using Spearman’s rank or 
Pearson’s correlation depending on whether the data were 
normally distributed. For the linear regression analyses, data on 
plasma alkylresorcinol homologues, whole grain and fibre intake 
were log transformed and zero values were substituted with the 
minimum value.

Results
Baseline characteristics of study participants and completion 
rates
A total of 50 participants (18 men and 32 women) completed the 
two dietary intervention periods. See online supplementary table 
S2 for baseline characteristics and online supplementary figure 
S2 for a flow diagram.

Dietary intake and compliance
Overall, participants complied well with both diets, based on both 
food diaries and plasma alkylresorcinol concentrations. Consump-
tion of equivalent study products was successfully matched between 
the two periods (see online supplementary table S3). Whole grain 
consumption was 68±45 g/day (mean±SD) at baseline, 179±50 g/
day during the whole  grain period and 13±10 g/day during the 
refined grain-based period (table 1), resulting in significant differ-
ences in whole  grain and dietary fibre intake between the two 
periods (ANOVA; p<0.0001, table 1). Fasting plasma alkylresor-
cinols were increased by the whole grain diet compared with the 
refined grain diet (ANOVA; p<0.0001, table  1) and were posi-
tively correlated with consumption of whole grains (Spearman’s 
rho=0.69, p<0.0001) and total dietary fibre (Spearman’s rho=0.52, 
p<0.0001), providing unbiased support for subject compliance 
to the protocol. As expected, compared with the refined grain 
products, the whole grain products had higher contents of dietary 

Table 1  Total mean daily intake of energy and macronutrient at baseline and during the whole grain and refined grain diet periods as well as 
intake of provided food products (values are presented as mean±SD, n=50)

Baseline Refined grain diet Whole grain diet p Value

Total daily intake*

 � Energy (MJ/day) 9.36±2.29 9.47±2.11 9.22±2.33 0.78

 � Carbohydrate (E%) 44.6±5.2a 49.4±5.1b 48.5±5.4b <0.001

 � Fat (E%) 35.9±4.9a 29.6±5.4b 30.0±5.6b <0.001

 � Protein (E%) 14.6±2.0a 15.5±2.1b 15.3±2.1b 0.012

 � Dietary fibre (g/day) 23±9a 21±7a 33±10b <0.001

 � Whole grain (g/day) 68±45a 13±10c 179±50b <0.001

 � Gluten (g/day) 12.3±4.1a 17.8±3.8b 17.8±4.9b <0.001

Intake from provided products†

 � Provided products (g/day) - 255±53 244±50 0.074

 � Whole grain (g/day) - 6.0±4.8 157.9±35.0 <0.001

 � Dietary fibre (g/day) - 10.4±2.4 23.3±4.8 <0.001

 � Energy (MJ/day) - 3.17±0.67 2.79±0.59 <0.001

 � Energy density (KJ/g) - 12.4±0.5 11.5±0.6 <0.001

 � Alkylresorcinols (mg/day)‡ - 42±12 92±20 <0.001

Biomarker of whole grain intake

 � Plasma alkylresorcinols (nmol/L)§ 167 (137–198)a 134 (107–161)a 380 (255–505)b <0.0001

*Daily energy and macronutrient intake were assessed by 4-day precoded food diaries at baseline and after each intervention period. Differences between diets were assessed by 
a one-way analysis of variance with Tukey’s multiple comparison test. Different superscripts (a and b)  indicate statistical differences within rows (p<0.05).
†Intake of study products was assessed by daily registrations in study diaries during both treatment periods. Differences between the two intervention diets were assessed by 
paired t-tests.
‡Note that two of the provided products for the refined grain intervention were relatively high in alkylresorcinols, however, still lower than the equivalent whole grain products 
(see online supplementary table S1).
§Values are presented as mean (CI 95%).
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fibre, arabinoxylan, alkylresorcinols and resistant starch (see online 
supplementary table S1) as well as higher average contents of arab-
inose, xylose and fucose and reduced contents of galacturonic acid 
(see online supplementary table S4). Although energy intake from 
the provided food products was 14% higher during the control 
period than during the whole grain period (paired t-test; p<0.001), 
the overall intake of energy (ie, provided foods and non-provided 
foods) did not differ between the two diet periods (table 1). Intake 
of nutrients and food groups did not differ between the two diets, 
except for dietary fibre and whole grains (table 1 and online supple-
mentary table S5).

Whole grain diet did not improve insulin sensitivity but 
reduced body weight
The intervention did not result in any differential changes 
in markers of glucose metabolism (HOMA-IR, glycated 

haemoglobin (HbA1c), fasting serum C-peptide, fasting glucose 
and insulin), lipid metabolism (fasting serum concentrations of 
triacylglycerol, HDL, low-density lipoprotein and total choles-
terol and FFA), liver function (alanine aminotransferase (ALT) 
and aspartate aminotransferase (AST)), satiety (fasting plasma 
concentrations of leptin, glucagon-like peptide  (GLP)-1 and 
GLP-2) or systolic/diastolic BP (table 2 and online  supplemen-
tary figure S3). However compared with the refined grain diet, 
the whole  grain diet reduced body weight (p<0.001; table 2) 
and fat-free mass (p=0.010) and a tendency for a reduction 
in fat mass (p=0.057) was also observed. In addition, SAD 
decreased during the whole  grain period compared with the 
refined grain period (p=0.001), and a similar tendency was 
observed for waist circumference (p=0.097). Changes in body 
weight, fat-free mass and SAD correlated with a difference in 
energy intake between the two periods (p<0.0001, p=0.0052 

Table 2  Effects of diet interventions on body composition, glucose metabolism, lipid metabolism, satiety hormones, blood pressure, liver markers 
and markers of inflammation in study participants (values are presented as mean±SD, n=50)

Variable

Refined grain Whole grain

p Value*Baseline End Baseline End

Body composition

 � Body weight (kg) 86.1±12.6 87.0±13.0 85.4±13.4 85.2±13.1 <0.001

 � Body fat mass (kg) 29.1±9.2 29.8±9.3 28.8±9.1 28.6±9.5 0.057

 � Fat-free mass (kg) 57.1±11.5 57.1±11.7 56.3±11.6 55.4±10.4 0.010

 � Waist circumference (cm) 100.4±8.6 100.8±9.1 100.1±8.4 99.4±9.3 0.097

 � Sagittal abdominal diameter (cm) 22.9±2.7 23.2±2.9 23.1±2.9 22.7±2.8 0.001

Glucose metabolism

 � HOMA-IR 3.2±1.7 3.2±1.8 2.9±1.4 2.9±1.5 0.53

 � HbA1c (%) 5.4±0.3 5.5±0.3 5.4±0.3 5.4±0.3 0.17

 � Fasting plasma glucose (mmol/L)† 5.7±0.6 5.7±0.6 5.7±0.5 5.6±0.6 0.15

 � Fasting serum C-peptide (pmol/L) 820±238 853±273 796±219 790±227 0.18

 � Fasting serum insulin (pmol/L)† 74.1±35.8 75.8±37.8 66.9±28.9 67.7±31.6 0.36

Lipids

 � Fasting serum total cholesterol (mmol/L) 5.4±1.0 5.4±1.0 5.4±0.9 5.2±0.9 0.28

 � Fasting serum LDL cholesterol (mmol/L) 3.2±0.8 3.1±0.8 3.2±0.7 3.1±0.7 0.38

 � Fasting serum HDL cholesterol (mmol/L) 1.3±0.2 1.3±0.3 1.3±0.3 1.3±0.3 0.26

 � Fasting serum triacylglycerol (mmol/L) 1.2±0.6 1.4±0.8 1.2±0.4 1.3±0.7 0.79

 � Fasting serum FFA (mmol/L)† 0.4±0.1 0.5±0.1 0.5±0.1 0.5±0.2 0.52

Satiety hormones

 � Fasting plasma leptin (ng/mL) 49.1±35.6 54.2±54.7 47.7±37.3 45.3±42.3 0.07

 � Fasting plasma GLP-1 (pmol/L)† 11.2±2.4 11.8±2.5 11.3±2.5 11.3±2.1 0.41

 � Fasting plasma GLP-2 (pmol/L)† 12.5±6.3 12.4±5.9 11.3±4.1 13.2±10.2 0.36

Blood pressure

 � Systolic BP (mm Hg) 124.2±11.8 124.1±12.4 126.2±12.0 124.0±12.6 0.67

 � Diastolic BP (mm Hg) 79.1±8.0 79.4±9.3 80.1±8.9 79.8±8.9 0.74

Liver markers

 � Fasting serum AST (U/L) 20.5±7.0 21.1±8.1 21.6±9.7 20.9±7.6 0.59

 � Fasting serum ALT (U/L) 21.6±11.5 24.6±16.2 23.8±14.1 23.6±13.6 0.71

Inflammatory markers

 � Fasting serum CRP (mg/L) 3.1±2.6 5.0±5.8 6.3±14.0 4.2±6.8 0.003

 � Fasting serum IL-6 (pg/mL) 1.2±0.7 2.0±2.0 1.6±1.2 1.4±1.1 0.009

 � Fasting serum IL-1β (n=7) (pg/mL)‡ 0.3±0.4 0.6±0.3 0.7±1.2 0.4±0.4 0.008

 � Fasting serum TNFα (pg/mL) 1.7±0.8 1.7±0.08 1.7±0.9 1.7±0.9 0.87

*Linear mixed model adjusted for gender and age.
†See postprandial measures in online supplementary figure S3.
‡Only detected in seven participants, which explains the large variation.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; BP, blood pressure; CRP, C-reactive protein; FFA, free-fatty acids; GLP, glucagon-like peptide; HbA1c, glycated 
haemoglobin; HDL, high-density lipoprotein; HOMA-IR, homeostatic model assessment for insulin resistance; IL, interleukin; LDL, low-density lipoprotein; TNFα, tumour necrosis 
factor alpha.
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and p=0.024, respectively; figure 1), suggesting that the reduc-
tion in body weight was primarily explained by a lower energy 
intake. Although plasma leptin was not significantly different 
between interventions (p=0.07), the reductions in body weight 
and energy intake were both significantly associated with a 
reduction in plasma leptin (Pearson r=0.47, p<0.0001 and 
Pearson r=0.40, p=0.0057, respectively).

Whole grain diet reduced fasting circulating levels of low-
grade inflammatory markers without affecting intestinal 
permeability
The systemic low-grade inflammatory marker CRP decreased in 
serum during the whole  grain diet compared with the refined 
grain diet (p=0.003; table 2). Likewise, serum concentrations 
of the proinflammatory cytokines, IL-6 and IL1β decreased 
(p=0.009 and 0.008, respectively), whereas tumour necrosis 
factor alpha concentrations remained unchanged. After adjust-
ment for body weight, the reductions in CRP, IL-6 and IL-1β were 
still evident (p=0.004, p=0.047 and p=0.009, respectively). 
The change in serum concentrations of IL-6 was associated with 
the change in whole  grain consumption (p=0.033, figure  2) 
but not with the change in energy intake. Whereas serum IL-6 
concentrations were borderline negatively associated with total 
plasma alkylresorcinols (p=0.059; online supplementary table 
S6), IL-6 was negatively associated with plasma concentrations 
of alkylresorcinol homologues C17:0 and C19:0 (p=0.0003 and 
p=0.027; figure 2B and online supplementary table S6), which 
are the main homologues in rye products (see online supplemen-
tary table S1). In addition, IL-6 was negatively associated with 

the ratio of plasma alkylresorcinol homologues C17:0-to-C21:0 
(p=0.024; figure 2B and online supplementary table S6), which 
is an estimate of the relative intake of whole grain wheat and 
rye,38 suggesting that the reduction in IL-6 was mainly associated 
with rye intake. Changes in CRP were not significantly associ-
ated with changes in whole  grain consumption, energy intake 
or plasma alkylresorcinols (see online supplementary table S6). 
There was no difference in the urinary excretion of lactulose 
and mannitol nor the lactulose–mannitol ratio between the 
two diet periods (see online supplementary figure S4A-C). This 
was further supported by unaltered fasting serum concentra-
tions of zonulin, a suggested biomarker of gut barrier function 
(see online supplementary figure S4D), indicating that there was 
no association between the reduction of inflammatory markers 
and markers of gut permeability.

Metagenomic profiling of faecal microbiota showed no major 
effects of increased whole grain intake
Relative to the refined grain diet, the whole grain diet did not 
result in significant changes in the faecal bacterial species diver-
sity or richness of the microbial community (figure  3A–B). 
Moreover, no significant changes in the abundance of indi-
vidual bacterial species, as assessed by shotgun sequencing, were 
observed after FDR  correction for multiple testing (figure  3C 
and online supplementary table S7). Among the species, which 
were responding the most, four distinct strains of Faecalibacte-
rium prausnitzii and one Prevotella copri increased in abundance 
after whole grain and decreased in abundance after refined grain 
consumption, whereas Bacteroides thetaiotaomicron changed 

Figure 1  Change in body composition was associated with change in energy intake. The difference in total energy intake between the two 
interventions (ΔEnergy) was associated with changes in (A) ΔBody weight, (B) ΔFat-free mass and (C) ΔSagittal abdominal diameter, where Δ refers 
to change of the given measure during the whole grain period minus the change of the given measure during the refined grain period. Correlations 
were calculated using Spearman’s rank or Pearson’s correlation depending on whether the data were normally distributed (n=50).

Figure 2  Change in fasting serum concentrations of IL-6 was associated with whole grain intake. (A) ΔIL-6, designating change in serum 
concentrations during the whole grain period minus the change during the refined grain, was negatively associated with ΔWhole grain intake, 
designating difference in whole grain intake between the two periods, as calculated by Spearman’s rank correlation (n=47). (B) Serum concentrations 
of IL-6 were negatively associated with plasma AR homologues (biomarkers of whole grain intake) and in particular with the C17:0 homologue 
(p=0.0003) and the ratio of C17:0-to-C21:0 (p=0.024), indicating a specific association with intake of whole grain rye, as calculated by linear 
regression analyses adjusted for age and gender (n=50) (see also online supplementary table S6). AR, alkylresorcinol; IL-6, interleukin 6.
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Figure 3  Faecal microbiome composition did not differ between the two diets. (A) The subjects’ faecal microbial species diversity assessed by 
Shannon Index and (B) richness did not significantly differ between the two diets. Shown is the species diversity at baselines (white boxes) and at 
the end of the refined grain diet (orange boxes) and whole grain diet (green boxes). (C) Heatmap of the median fold changes in relative abundance 
of the individual MGSs during refined grain and whole grain diet, respectively. No MGSs changed significantly comparing the two periods. Of 
note, five species differed between diets with a FDR-P below 0.2 (red dotted line). (D) Gene diversity assessed by Shannon Index and (E) richness 
did not differ significantly between diets. Shown is the gene diversity at baselines (white boxes) and at the end of the refined grain diet (orange 
boxes) and whole grain diet (green boxes). (F) Heatmap of the median fold changes in relative abundance of the individual gene functions (KOs) 
during refined grain and whole grain diet, respectively. Two KOs differed significantly between diets with a FDR-P below 0.05 (red dotted line). 
Changes in microbiome composition were assessed by linear mixed model adjusted for age and gender followed by correction for multiple testing 
by the Benjamini-Hochberg approach (n=48) (see also online supplementary table S7 and S8). Among the bacterial species responding most to 
the intervention, several species were associated with (G) whole grain intake and (H) fibre intake, whereas only Erysipelatoclostridium ramosum 
was associated with (I) serum IL-6 concentrations and no species were associated with (J) serum CRP concentrations as assessed by the linear 
mixed model adjusted for age and gender followed by correction for multiple testing by the Benjamini-Hochberg approach (n=48) (see also online 
supplementary table S11). CRP, C-reactive protein; FDR-P, false discovery rate corrected p value; KEGG, Kyoto Encyclopaedia of Genes and Genomes; 
KO, KEGG orthologies; MGS, metagenomic species.
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in the opposite direction. Microbial gene diversity and rich-
ness remained unaffected (figure 3D–E). Two KOs significantly 
increased during the whole grain period as compared with the 
refined grain period, namely a lactose/L-arabinose transport 
system substrate-binding protein (KO K10188) and a glyco-
syl-1-phosphate transferase (KO K15915) (FDR corrected 
p<0.05; figure  3F and online supplementary table S8). We 
specifically tested changes in the abundance of saccharolytic 
genes,21 but no carbohydrate active enzymes were found to differ 
(see  online supplementary table S9). Finally, since butyrate is 
predominantly synthesised via butyryl-CoA:acetate CoA-trans-
ferase genes,39 we specifically tested whether the abundance of 
any acetate CoA-transferase genes was significantly changed. 
However, this was not the case. In line with the shotgun metag-
enomics results, 16S rRNA gene sequencing did not reveal any 
significant differences in the faecal microbiota between the two 
dietary interventions (see  online supplementary table S10). 
Among the most responding species mentioned above, several 
strains of Clostridiales and F. prausnitzii were positively associ-
ated with whole grain and fibre intake, whereas B. thetaiotaomi-
cron was negatively associated with whole grain and fibre intake 
(FDR-corrected p<0.05; figure 3G–H and supplementary table 
S11), suggesting that these bacterial species were affected by the 
intervention. Only Erysipelatoclostridium ramosum was associ-
ated with serum IL-6 concentrations, however not with serum 
CRP concentrations (FDR-corrected p<0.05; figure  3I–J and 
supplementary table S11).

Colonic fermentation was unaffected by diet, but 
whole grain-derived metabolites changed in urine
Although enhanced whole  grain consumption had only subtle 
effects on the faecal bacterial composition and genomi-
cally inferred bacterial activity, we investigated whether intestinal 
gas production, intestinal transit time and bacterially derived 
metabolites changed in response to increased whole grain intake. 
Neither fasting nor postprandial breath hydrogen excretion 
differed between the intervention periods (see  online supple-
mentary figure S5). Unaltered basal colonic bacterial fermenta-
tion was supported by an observed unaltered intestinal transit 
time (see online supplementary figure S6) and a non-detectable 
change in fasting plasma SCFA concentrations (see online supple-
mentary table S12). However, we noted that a comparison of the 
treatment groups at end of the periods indicated higher plasma 
concentrations of butyrate after the whole  grain intervention 
as compared with the refined grain interventions (paired t-test; 
p=0.022). Untargeted metabolic profiling of urine showed five 
urinary metabolites that increased during the whole grain period 
compared with the refined grain period (FDR-corrected p<0.05; 

table 3; see online supplementary table S13). Four of these were 
identified as urinary biomarkers of whole  grain intake and 
included the whole  grain derived alkylresorcinol 3-(3,5-dihy-
droxyphenyl)−1-propanoic acid-glucuronide (DHPPA-glucuro-
nide),40 2-aminophenol-sulfate, a microbial degradation product 
of benzoxazinoids found in wheat and rye41 and the phenolic 
metabolites, pyrocatechol-sulfate and pyrocatechol-glucuro-
nide produced by the gut microbiota from dietary phenolic 
compounds.42 All of these metabolites were positively correlated 
with whole grain intake (p<0.001; table 3), suggesting changes 
in these whole grain-derived metabolites in the systemic circula-
tion. In addition, linear regression analyses showed that urinary 
concentrations of DHPPA-glucuronide was negatively associated 
with serum concentrations of both IL-6 and CRP (p=0.002 and 
p=0.032, respectively  (see online supplementary table S14), 
and urinary concentrations of pyrocatechol-glucuronide and 
2-aminophenol-sulfate were negatively associated with CRP 
(p=0.023 and p=0.018, respectively; see online supplementary 
table S14), substantiating the association between whole grain 
intake and serum concentrations of inflammatory markers. In 
contrast, urinary concentrations of the fifth metabolite, puta-
tively identified as 3-methyladipic acid, did not correlate with 
whole grain intake, however, a linear regression analysis showed 
that it was negatively associated with body weight (p<0.0001).

Discussion
By a randomised, controlled cross-over trial comprising two 
8-week dietary intervention periods in subjects exhibiting 
an increased metabolic risk profile, we demonstrated that a 
whole grain diet, as compared with a refined grain diet, reduced 
body weight and markers of low-grade systemic inflammation 
without significantly changing the faecal microbial composi-
tion, diversity or functional potential. Importantly, the observed 
effect of whole grain on inflammation markers was still evident 
after adjustment for weight loss. The effects on inflammation 
and body weight were the net result of the refined grain diet 
increasing weight and inflammatory markers and the whole grain 
diet reducing these parameters. However, we found no changes 
in glucose and lipid metabolism, markers for liver fibrosis, 
metabolic satiety-regulating hormones or BP after 8 weeks of 
enhanced whole  grain intake as compared with refined grain 
intake.

Our results add to a growing body of literature demonstrating 
the ability of whole  grain consumption to reduce low-grade 
systemic inflammation43 and body weight.44 Here, we found that 
the reduction in body weight was directly associated with the 
reduction in energy intake, suggesting that whole  grain prod-
ucts, compared with refined grain products, induce satiation at 

Table 3  Urine metabolites changing with intake of whole grain compared with refined grain (values are median (25%–75%) of fold changes 
calculated as the relative abundance at endpoint divided by the relative abundance at baseline, n=48)

Metabolite Method
Refined grain fold 
change

Whole grain fold 
change

FDR-corrected
p value*

Correlation to whole grain intake†

Rho p Value

DHPPA-glucuronide UPLC-MS 0.67 (0.41–0.87) 1.48 (0.93–2.30) <0.0001 0.69 <0.0001

2-aminophenol-sulfate UPLC-MS 0.83 (0.46–1.39) 1.92 (0.81–3.53) 0.003 0.51 <0.0001

Pyrocatechol-glucuronide UPLC-MS 0.88 (0.60–1.32) 1.57 (0.87–2.23) 0.007 0.33 <0.001

Pyrocatechol-sulfate UPLC-MS 1.01 (0.74–1.54) 1.64 (0.94–2.16) 0.036 0.37 <0.001

3-methyladipic acid GC-MS 0.76 (0.54–0.97) 1.11 (0.87–1.34) 0.004 0.20 0.053

See online supplementary table S13 for identification details.
*Linear mixed model adjusted for age and gender followed by correction for multiple testing by the Benjamini-Hochberg approach.
†Spearman’s Rank correlation between metabolites and whole grain intake.
DHPPA, 3-(3,5-dihydroxyphenyl)−1-propanoic acid; GC-MS, gas chromatography mass spectrometry.; UPLC-MS, ultra-performance liquid chromatography mass spectrometry.
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a lower energy intake level. This is in line with a recent study, 
suggesting that whole grain-induced weight loss is mediated by a 
lower energy intake.45

Noteworthy, the reduction in fasting serum concentrations 
of the proinflammatory cytokine IL-6 was directly related to 
change in whole grain intake and in particular to rye intake as 
suggested by the associations between IL-6 and plasma concen-
trations of alkylresorcinol C17:0, an alkylresorcinol homologue 
predominantly coming from rye products. The association 
between the reduction in inflammatory markers and whole grain 
consumption was substantiated by several urinary biomarkers of 
whole  grain showing negative correlations to serum CRP and 
IL-6.

Notably, the baseline values for the inflammatory markers 
prior to the whole grain and refined grain interventions, respec-
tively, were not the same. Keeping in mind the cross-over design 
of our study, which means that half of the baseline measurements 
before the whole grain intervention come from individuals who 
have previously undergone the refined grain intervention and 
vice versa, the differences between the two baselines can be 
explained by carry-over effects pulling in two opposite direc-
tions. However, such effects were taken into account by the 
applied linear mixed model which adjusts for carry-over and 
period effects.

Whereas other intervention studies have showed a reduction 
in circulating concentrations of CRP,44 46 47 only one study, which 
lacked a control group, has to our knowledge revealed a signifi-
cant reduction of IL-6 following a whole grain diet that included 
whole grain barley and brown rice.48

Studies in mice have suggested that non-digestible fibres 
reduce systemic low-grade inflammation by changing the gut 
permeability.49 However, whole  grain intake did not affect 
gut permeability in the present study. Instead, the associations 
between biomarkers of whole  grain and proinflammatory 
markers suggest that changes in circulating levels of whole grain 
derived phytochemicals, in particular of rye, may be key to the 
health-promoting effects.

The gut microbiota has also been suggested to act as a mediator 
of whole  grain-induced improvements on low-grade systemic 
inflammation and increased satiety48 50 via production of SCFA 
and other bioactive compounds.8 However, only a few obser-
vations in our study pointed towards an effect of whole grain 
on the gut microbiota composition. Consistent with increased 
levels of arabinose in the whole grain diet, we found a significant 
enrichment in genes involved in the bacterial lactose/L-arabi-
nose transport system substrate-binding proteins in response to 
the whole  grain diet as compared with the refined grain diet. 
Furthermore, we found increased urinary concentrations of 
whole  grain-derived microbial metabolites, suggesting subtle 
whole grain-induced effects on the gut microbial metabolism.

Although it has been reported that a sudden switch between 
plant-based and meat-based diets rapidly changes the compo-
sition and function of the microbiota,51 other studies have 
demonstrated absence of whole  grain-induced changes of gut 
microbiota composition in both high-habitual and low-habitual 
whole  grain consumers.14 15 19 52 While the design of previous 
studies may have impaired the ability to detect effects of inter-
ventions that did not imply significant changes from the habitual 
diet of some individuals, our present design, comparing a 
whole grain intervention directly to a refined grain intervention, 
must be expected to compensate for this problem. In contrast 
to previous studies, which typically involved sequencing only of 
bacterial 16S rRNA gene regions, here we applied both deep 
metagenomic (shotgun) sequencing and 16S rRNA amplicon 

profiling allowing us to analyse the microbiome response at 
both species and functional levels. Yet, we identified only subtle 
responses to the intervention. None of the most intervention-re-
sponsive bacterial species remained significantly changed after 
adjusting for multiple testing, however, it should be noted that 
in line with our observations, a whole grain-induced increase in 
F. prausnitzii, P. copri and Clostridiales has been observed also in 
other studies examining the effects of dietary fibres on the gut 
microbiota.53 54 The associations between whole grain intake and 
strains of F. prausnitzii and Clostridiales and the inverse associa-
tion between whole grain intake and B. thetaiotaomicron suggest 
that these bacteria were indeed responding to the dietary inter-
vention. Dietary fibre-induced blooming of the butyrate-pro-
ducing F. prausnitzii at the expense of Bacteroides has previously 
been shown in vitro as a result of a drop in pH.55 However, 
here we did not observe any differences in plasma SCFAs or 
intestinal transit time to suggest a changed colonic pH.56 Among 
the most responding species, E. ramosum was associated with 
serum IL-6 concentrations. This species has been reported to 
promote obesity in mice fed a high fat diet57 and to be abundant 
in individuals with low microbiome gene count and high plasma 
concentrations of CRP,58 suggesting that a whole grain-induced 
reduction of E. ramosum may have contributed to the observed 
reduction in weight and IL-6.

The limited effects of whole grains on the gut microbiota 
in clinical trials may reflect that whole grains as a food group 
recommended as part of a healthy diet have been diffusely 
defined and may have included different cereals such as wheat, 
rye and oat, which may exert very different effects on the indi-
vidual gut microbes. Therefore, future studies should rather 
focus on examining the effect of specific grains.

In summary, we found that a whole grain diet as compared 
with a refined grain diet reduced energy intake and body weight 
and the low-grade systemic inflammation markers CRP and IL-6, 
without significantly altering whole body insulin sensitivity, gut 
microbiome or gut functionality in terms of intestinal integrity 
and transit time. Thus, in contrast to our hypothesis, the health 
benefits of this specific diet rich in whole grains appeared to 
be independent of changes in the gut microbiome composition 
within an 8-week diet study.
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