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Abstract

Background

The potential endocrine-disrupting effects of perfluoroalkyl substances (PFASs) have been

demonstrated in animal studies, but whether PFASs may interfere with body weight regula-

tion in humans is largely unknown. This study aimed to examine the associations of PFAS

exposure with changes in body weight and resting metabolic rate (RMR) in a diet-induced

weight-loss setting.

Methods and findings

In the 2-year POUNDS Lost randomized clinical trial based in Boston, Massachusetts, and

Baton Rouge, Louisiana, that examined the effects of energy-restricted diets on weight

changes, baseline plasma concentrations of major PFASs were measured among 621 over-

weight and obese participants aged 30–70 years. Body weight was measured at baseline

and 6, 12, 18, and 24 months. RMR and other metabolic parameters, including glucose, lip-

ids, thyroid hormones, and leptin, were measured at baseline and 6 and 24 months. Partici-

pants lost an average of 6.4 kg of body weight during the first 6 months (weight-loss period)

and subsequently regained an average of 2.7 kg of body weight during the period of 6–24

months (weight regain period). After multivariate adjustment, baseline PFAS concentrations

were not significantly associated with concurrent body weight or weight loss during the first

6 months. In contrast, higher baseline levels of PFASs were significantly associated with a

greater weight regain, primarily in women. In women, comparing the highest to the lowest
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tertiles of PFAS concentrations, the multivariate-adjusted mean weight regain (SE) was 4.0

(0.8) versus 2.1 (0.9) kg for perfluorooctanesulfonic acid (PFOS) (Ptrend = 0.01); 4.3 (0.9)

versus 2.2 (0.8) kg for perfluorooctanoic acid (PFOA) (Ptrend = 0.007); 4.7 (0.9) versus 2.5

(0.9) kg for perfluorononanoic acid (PFNA) (Ptrend = 0.006); 4.9 (0.9) versus 2.7 (0.8) kg for

perfluorohexanesulfonic acid (PFHxS) (Ptrend = 0.009); and 4.2 (0.8) versus 2.5 (0.9) kg for

perfluorodecanoic acid (PFDA) (Ptrend = 0.03). When further adjusted for changes in body

weight or thyroid hormones during the first 6 months, results remained similar. Moreover,

higher baseline plasma PFAS concentrations, especially for PFOS and PFNA, were signifi-

cantly associated with greater decline in RMR during the weight-loss period and less

increase in RMR during the weight regain period in both men and women. Limitations of the

study include the possibility of unmeasured or residual confounding by socioeconomic and

psychosocial factors, as well as possible relapse to the usual diet prior to randomization,

which could have been rich in foods contaminated by PFASs through food packaging and

also dense in energy.

Conclusions

In this diet-induced weight-loss trial, higher baseline plasma PFAS concentrations were

associated with a greater weight regain, especially in women, possibly explained by a slower

regression of RMR levels. These data illustrate a potential novel pathway through which

PFASs interfere with human body weight regulation and metabolism. The possible impact of

environmental chemicals on the obesity epidemic therefore deserves attention.

Trial registration

ClinicalTrials.gov NCT00072995

Author summary

Why was this study done?

• Although many approaches can be used to achieve a short-term weight loss, mainte-

nance of weight loss has become a key challenge for sustaining long-term benefits of

weight loss. Accumulating evidence has suggested that certain environmental com-

pounds may play an important role in weight gain and obesity development.

• The potential endocrine-disrupting effects of perfluoroalkyl substances (PFASs) have

been demonstrated in animal studies, but whether PFASs may interfere with body

weight regulation in humans is largely unknown.

What did the researchers do and find?

• In a 2-year diet-induced weight-loss trial (the POUNDS Lost trial), we measured plasma

concentrations of PFASs at baseline in 621 overweight and obese men and women and

collected information on changes in body weight, resting metabolic rate (RMR), and
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other metabolic parameters during weight loss and weight regain over the 2 years the

participants were on the study diet.

• Higher baseline levels of PFASs were significantly associated with a greater weight

regain, primarily in women. On average, women in the highest tertile of PFAS concen-

trations regained 1.7–2.2 kg more body weight than women in the lowest tertile.

• Higher baseline plasma concentrations of PFASs, especially perfluorooctanesulfonic

acid (PFOS) and perfluorononanoic acid (PFNA), were significantly associated with

greater decline in RMR during the first 6 months and less increase in RMR during the

period when participants on average regained weight (6–24 months).

What do these findings mean?

• In this diet-induced weight-loss trial, higher baseline PFAS concentrations were associ-

ated with a greater weight regain, especially in women, possibly explained by a slower

return of RMR levels. These data provide initial evidence suggesting that PFASs may

interfere with human body weight regulation and counteract efforts to maintain weight

loss in adults.

Introduction

Obesity has become a worldwide public health concern [1,2]. Based on recent US data, the

prevalence of obesity is 37.7% in adults and 17.0% in children and adolescents, with no sign of

a reduction in the foreseeable future [3–5]. Although many approaches can be used to achieve

short-term weight loss, its maintenance remains a key challenge [6,7]. Meanwhile, given the

same intervention strategies, apparent within-group variability in weight loss and weight

regain has been demonstrated [7,8]. Although the exact reasons for the variability are largely

unknown, accumulating evidence has suggested that certain environmental compounds may

play an important role in weight gain and obesity development [9,10].

Perfluoroalkyl substances (PFASs), especially perfluorooctanoic acid (PFOA) and perfluor-

ooctanesulfonic acid (PFOS), have been identified as plausible endocrine disruptors with the

potential to perturb weight regulation [9,11–14]. Evidence from animal studies has suggested

that PFASs may be involved in altering energy metabolism and thyroid hormone homeostasis

[15–17], likely through the activation of various transcriptional factors, such as the peroxisome

proliferator-activated receptors (PPARs) [18–20]. However, given the species-specific toxico-

kinetics and tissue distribution of PFASs [18], extrapolation from animals to humans has yet

to be supported. Although some human studies have examined the potential intergenerational

effects of PFASs on body weight, the findings were somewhat inconsistent [21–27]. To our

knowledge, no prospective study has explored the association between PFAS exposure and

weight change in adults under controlled circumstances. Furthermore, it is largely unknown

whether resting metabolic rate (RMR) or thyroid hormones, factors that can influence energy

expenditure [28], might be also involved in the potential effects of PFASs on weight regulation

[29,30].

PFASs are extensively used in many industrial and consumer products, including food

packaging, paper and textile coatings, and non-stick cookware [31–34]. A recent study
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reported that the drinking water supplies for at least 6 million US citizens may exceed the US

Environmental Protection Agency’s health advisory limit for lifetime exposure to PFOS and

PFOA from drinking water [35]. In addition, these compounds are extremely stable in the

environment and have a long elimination half-life in the human body [36], thus rendering

PFASs a possible threat to human health. Due to the potential metabolic abnormalities associ-

ated with elevated PFAS levels, we aimed to examine the associations of PFAS exposure with

changes in body weight and RMR in the well-designed and rigorously conducted POUNDS

(Preventing Overweight Using Novel Dietary Strategies) Lost trial [37].

Methods

Ethics statement

The protocol was approved by the institutional review boards at the Harvard T.H. Chan School

of Public Health, Brigham and Women’s Hospital, and the Pennington Biomedical Research

Center of the Louisiana State University System, as well as by a data and safety monitoring

board appointed by the National Heart, Lung, and Blood Institute. All participants provided

written informed consent. The trial was registered at ClinicalTrials.gov (NCT00072995).

Study participants

The POUNDS Lost study, a 2-year randomized clinical trial, was designed to compare the

effects of 4 energy-reduced diets with different macronutrient (i.e., fat, protein, and carbohy-

drate) compositions on body weight, as previously described [37]. At baseline, 811 overweight

and obese men and women aged 30–70 years were randomly assigned to 1 of 4 diets that con-

sisted of different compositions of similar foods and met the guidelines for cardiovascular

health. Eighty percent of the participants (n = 645) completed the trial. Each participant’s calo-

ric prescription for the 2-year period represented a deficit of 750 kcal per day from baseline, as

calculated from each individual’s resting energy expenditure and activity level [37]. All partici-

pants had normal thyroid function at study baseline [38]. The main findings of this trial were

that most of the weight loss was observed in the first 6 months, followed by a gradual weight

regain through to 24 months, and that the weight changes (both weight loss and weight regain)

did not differ significantly between the diet groups [37].

The current analysis included 621 participants with available fasting plasma samples col-

lected at baseline. Of these individuals, 592 and 460 participants also provided blood samples

at 6 months and 2 years, respectively.

Measurements of anthropometry and RMR

In the morning before breakfast and after urination, body weight and waist circumference

were measured at baseline and 6, 12, 18, and 24 months. Body mass index (BMI) was calcu-

lated as body weight in kilograms divided by height in meters squared. At baseline and 6 and

24 months, body fat mass and lean mass (n = 424) were measured using dual energy X-ray

absorptiometry (DXA) (Hologic QDR 4500A bone densitometer; Hologic); visceral and sub-

cutaneous abdominal fat (n = 165) were measured using a computed tomography (CT) scan-

ner [39]; and blood pressure was measured by an automated device (Omron HEM907XL;

Omron). RMR was assessed at baseline and 6 and 24 months using a Deltatrac II Metabolic

Monitor (Datex-Ohmeda) after an overnight fast [40]. Briefly, after a 30-minute rest, a trans-

parent plastic hood was placed over the head of the participant for another 30 minutes. Partici-

pants were required to keep still and awake during the test, and the last 20 minutes of

measurements were used for the calculation of RMR [40].
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Laboratory measurements of PFASs and other metabolic markers

Plasma concentrations of PFOS, PFOA, perfluorononanoic acid (PFNA), perfluorohexanesul-

fonic acid (PFHxS), and perfluorodecanoic acid (PFDA) were measured at baseline only, using

a sensitive and reliable method based on online solid phase extraction and liquid chromatogra-

phy coupled to a triple quadropole mass spectrometer [41], with minor modifications. Due to

the long elimination half-lives of the PFASs and incomplete samplings, we did not measure

plasma PFAS levels during the trial. For all major PFASs, the concentrations were above the

limit of detection (0.05 ng/ml), and the inter- and intra-assay coefficients of variation were

<6.3% and<6.1%, respectively.

In our pilot study evaluating the within-person stability of PFAS concentrations, intra-class

correlation coefficients (ICCs) between concentrations in 2 blood samples collected 1–2 years

apart from 58 participants in the Nurses’ Health Study II demonstrated excellent reproducibil-

ity of PFAS concentrations in blood: the ICCs were 0.91 for PFOS, 0.90 for PFOA, 0.94 for

PFHxS, 0.87 for PFNA, and 0.82 for PFDA (all P< 0.001).

At baseline, 6 months, and 24 months, fasting plasma glucose, insulin, total cholesterol,

high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and

triglycerides were measured on the Synchron CX7 (Beckman Coulter), and hemoglobin A1C

(HbA1c) was measured on a Synchron CX5 (Beckman Coulter); plasma leptin and soluble lep-

tin receptor were measured by an ultrasensitive immunoassay (R&D Systems); and serum free

triiodothyronine (T3), free thyroxine (T4), total T3, total T4, and thyroid stimulating hormone

were measured using a competitive electrochemiluminescence immunoassay on the Roche E

modular system (Roche Diagnostics), as previously described elsewhere [37]. The homeostatic

model assessment of insulin resistance (HOMA-IR) value was calculated using the updated

HOMA model (HOMA2) described by Levy et al. [42]. Adipose tissue was obtained from 103

participants at baseline and at 6 months. Gene expression was measured by direct hybridiza-

tion using the Illumina HumanHT-12 v3 Expression BeadChip (Illumina) (details in S1 Text).

Assessments of other covariates

Using standardized questionnaires, we obtained information on age, sex, race (white, black,

Hispanic, or other), educational attainment (high school or less, some college, or college grad-

uate or beyond), smoking status (never, former, or current smoker), alcohol consumption

(drinks/week), menopausal status (yes or no), and hormone replacement therapy use (yes or

no). At baseline, 6 months, and 24 months, physical activity was assessed using the Baecke

physical activity questionnaire, which included 16 items inquiring about levels of habitual

physical activities (i.e., physical activity at work, sports during leisure time, and other physical

activity during leisure time) [43]. All responses were pre-coded on 5-point scales. Total physi-

cal activity was expressed as the average of the sum of the individual responses, with a score

ranging from 0 to 5 [43].

Statistical analysis

The comparisons between participants included in the current analysis and those excluded

were evaluated by the Student’s t test for normally distributed variables, the Wilcoxon rank-

sum test for skewed variables, and the chi-squared test for categorical variables. The associa-

tions between baseline PFASs and changes in body weight and RMR during the period of

weight loss (first 6 months) or weight regain (6–24 months) were examined using linear

regression. The least-square means of changes in body weight (at 6, 12, 18, and 24 months)

and RMR (at 6 and 24 months) according to tertiles of baseline PFAS concentrations were cal-

culated. In addition, the relationship between PFASs and other potential mediators including
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thyroid hormones and leptin were further evaluated using linear regression. Covariates con-

sidered in multivariate adjustments included baseline age (continuous), sex, race, educational

attainment (high school or less, some college, or college graduate or beyond), smoking status

(never, former, or current smoker), alcohol consumption (continuous), physical activity (con-

tinuous), the 4 diet groups, and baseline BMI (or baseline RMR for the analysis of RMR

change). Moreover, menopausal status and hormone replacement therapy (women only) were

also entered into the model in a sensitivity analysis. To test the linear trend of the associations

of baseline PFAS concentrations with changes in body weight and RMR, we assigned a median

value to each tertile of PFAS concentration and treated it as a continuous variable. We also

tested the linear trend using the PFAS concentrations as continuous variables (log10-trans-

formed). In an exploratory analysis, factor analysis was used to explore the potential exposure

patterns of PFASs.

To investigate the associations of baseline PFASs with baseline values of and changes in

other metabolic parameters (including glucose, lipids, thyroid hormones, and leptin), Spear-

man correlation coefficients (rs) were calculated with adjustment for the potential confounders

mentioned above. Stratified analysis was also conducted according to sex, and a likelihood

ratio test was performed to test for potential interactions. In sensitivity analyses, body weight

or RMR at 6 months (or changes during the first 6 months), instead of the baseline value, was

included in the multivariate models when examining the associations between baseline PFASs

and changes in body weight or RMR during the period of 6–24 months. We also stratified the

analyses by dietary intervention group. In addition, to account for the correlations between

measurements on the same individuals, linear mixed-effects models were also used to examine

the associations between baseline PFAS concentrations and weight regain (weight measure-

ments at 6, 12, 18, and 24 months), with an unstructured covariance matrix. To assess con-

founding patterns, in another sensitivity analysis, the covariates were entered into the model

in a stepwise manner. In an exploratory analysis, we also examined the associations of PFAS

exposures with the gene expression profile in adipose tissue (S1 Text).

A 2-sided P< 0.05 was considered statistically significant. The statistical analyses were per-

formed with SAS software, version 9.4 (SAS Institute).

Results

Study population

The mean (SD) age of the 621 participants was 51.4 (9.1) years, with a mean (SD) baseline BMI

of 32.6 (3.8) kg/m2. Participants lost an average of 6.4 kg of body weight during the first 6

months and subsequently regained an average of 2.7 kg during the remaining study period. In

comparison with the POUNDS Lost participants not included in the current study due to the

lack of plasma samples at baseline, the participants included were slightly older (51.4 versus

49.1 years, P = 0.01), but there were no significant differences in other characteristics, includ-

ing body weight and RMR (S1 Table).

Associations between PFASs, body weight, and other metabolic parameters

at baseline

Table 1 shows the baseline characteristics of the study participants. PFOS and PFOA were the

dominant PFASs. The median (interquartile range) plasma concentration was 24.5 (16.2–37.0)

ng/ml for PFOS, 4.5 (3.3–6.3) ng/ml for PFOA, 2.4 (1.5–3.6) ng/ml for PFHxS, 1.5 (1.0–2.4)

ng/ml for PFNA, and 0.37 (0.27–0.52) ng/ml for PFDA. At baseline, significant inter-correla-

tions were observed between PFOS, PFOA, PFHxS, PFNA, and PFDA (rs ranged from 0.38 to
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0.85) (S2 Table), although no particular pattern of PFAS mixture was identified in the factor

analysis. After multivariate adjustment, PFOS, PFOA, and PFNA concentration were all posi-

tively associated with insulin, HOMA-IR, diastolic blood pressure, and free T3 (rs ranged from

0.10 to 0.18, all P< 0.05) at baseline. In addition, certain PFASs (e.g., PFHxS and PFDA) were

positively associated with some of the variables, including visceral fat mass, systolic blood pres-

sure, glucose, triglycerides, LDL cholesterol, free T4, total T4, and leptin (rs ranged from 0.08

Table 1. Baseline characteristics of participating men and women.

Characteristic Men (n = 237) Women (n = 384) P-valuea

Age (years) 51.9 ± 9.6 51.1 ± 8.8 0.26

Race white 89.9% 74.7% <0.001

BMI (kg/m2) 33.4 ± 3.4 32.0 ± 3.9 <0.001

Weight (kg) 104.1 ± 12.7 85.7 ± 12.6 <0.001

Waist circumference (cm) 113.2 ± 10.1 97.2 ± 10.9 <0.001

Resting metabolic rate (kcal/24 h) 1,821.9 ± 243.6 1,378.6 ± 184.6 <0.001

Education level 0.19

High school or less 11.0% 9.0%

Some college 17.3% 23.2%

College graduate or beyond 71.7% 61.8%

Smoking status 0.006

Never smoked 51.9% 64.9%

Past smoker 43.9% 32.0%

Current smoker 4.2% 3.1%

Alcohol consumption (drinks/week) 2.0 (0–5.0) 1.0 (0–2.0) <0.001

Physical activityb 1.60 ± 0.1 1.56 ± 0.1

Systolic blood pressure (mm Hg) 124.0 ± 12.2 117.0 ± 13.7 <0.001

Diastolic blood pressure (mm Hg) 77.7 ± 9.1 74.0 ± 8.9 <0.001

Glucose (mmol/l) 5.2 (4.9–5.5) 4.9 (4.6–5.1) <0.001

Insulin (pmol/l)c 84.7 (61.1–117.4) 63.9 (45.1–101.4) <0.001

Total cholesterol (mmol/l) 5.9 (4.8–8.5) 5.6 (4.8–6.8) 0.002

LDL cholesterol (mmol/l) 3.1 (2.6–3.7) 3.3 (2.8–3.8) 0.003

HDL cholesterol (mmol/l) 1.0 (0.9–1.2) 1.3 (1.1–1.6) <0.001

Triglycerides (mmol/l) 2.0 ± 1.1 1.4 ± 0.8 <0.001

Free T3 (pmol/l)d 5.2 (4.8–5.5) 4.8 (4.4–5.1) <0.001

Free T4 (pmol/l)d 15.3 (14.1–16.2) 14.8 (13.5–16.2) 0.002

PFOS (ng/ml) 27.2 (19.9–45.2) 22.3 (14.3–34.9) <0.001

PFOA (ng/ml) 5.2 (3.9–6.8) 4.1 (2.8–5.6) <0.001

PFHxS (ng/ml) 3.1 (2.3–4.4) 1.9 (1.2–3.0) <0.001

PFNA (ng/ml) 1.6 (1.1–2.4) 1.5 (1.0–2.4) 0.07

PFDA (ng/ml) 0.4 (0.3–0.5) 0.4 (0.3–0.6) 0.38

Data are mean ± SD, median (interquartile range), or percentage.
aThe comparisons were examined using the Student’s t test for normally distributed variables, the Wilcoxon rank-sum test for skewed variables, and the chi-squared test

for categorical variables.
bPhysical activity was estimated by the Baecke questionnaire.
cOne participant had missing value for insulin.
dIn all, 30 men and 60 women had missing values for free T3 and free T4.

HDL, high-density lipoprotein; LDL, low-density lipoprotein; PFDA, perfluorodecanoic acid; PFHxS, perfluorohexanesulfonic acid; PFNA, perfluorononanoic acid;

PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; T3, triiodothyronine; T4, thyroxine.

https://doi.org/10.1371/journal.pmed.1002502.t001
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to 0.24, all P< 0.05) (S2 Table). No PFASs were correlated with body weight, waist circumfer-

ence, BMI, or RMR at baseline.

Baseline PFASs and body weight changes

After multivariate adjustment including smoking status, physical activity, baseline BMI, and

dietary intervention group, baseline PFAS concentrations were not associated with weight loss

in the first 6 months (Table 2). The crude positive associations between certain PFAS levels

and weight loss were abolished after multivariate adjustment (Table 2). In contrast, after multi-

variate adjustment, baseline PFOS and PFNA concentrations were positively associated with

greater weight regain in the total study population. Comparing the highest to the lowest ter-

tiles, the least-square means (SEs) of weight regain were 3.3 (0.6) versus 1.8 (0.6) kg for PFOS

(Ptrend = 0.009) and 3.4 (0.6) versus 2.0 (0.6) kg for PFNA (Ptrend = 0.01) (Model 2 in Table 2).

The results were similar when PFAS concentrations were treated as continuous variables (the

beta coefficients for per-unit log10-transformed PFOS and PFNA increment were 0.80 and

1.02, respectively; both Pcontinuous < 0.05) (Table 2). After further adjusting for baseline thyroid

hormones (Model 3 in Table 2), the associations remained significant. In sensitivity analyses,

when body weight at baseline or 6 months (instead of BMI at baseline) was adjusted for in the

models, the results were largely unchanged. When changes in body weight or changes in thy-

roid hormones or leptin during the first 6 months were also included as covariates, the results

did not change materially. In addition, similar results were obtained when using linear mixed-

effects models. When PFAS levels were categorized into quartiles, the results were largely

similar.

Sex-specific associations between PFASs and weight regain

In an analysis stratified by sex, significant associations with weight regain were observed for all

individual PFASs in women, but not in men. Comparing the highest to the lowest tertiles, the

least-square means (SEs) of weight regain in women were 4.0 (0.8) versus 2.1 (0.9) kg for

PFOS (Ptrend = 0.01); 4.3 (0.9) versus 2.2 (0.8) kg for PFOA (Ptrend = 0.007); 4.9 (0.9) versus 2.7

(0.8) kg for PFHxS (Ptrend = 0.009); 4.7 (0.9) versus 2.5 (0.9) kg for PFNA (Ptrend = 0.006); and

4.2 (0.8) versus 2.5 (0.9) kg for PFDA (Ptrend = 0.03) (Table 3). Significant interactions with sex

were demonstrated for PFOA and PFHxS (Pinteraction = 0.04 and 0.01, respectively). When the

covariates were entered into the model in a stepwise manner, these results did not change

materially (S3 Table). The trajectory of changes in body weight in men and women according

to tertiles of PFAS concentrations is shown in Fig 1. The trajectory of changes in body weight

among total participants is shown in S1 Fig.

Baseline PFASs and changes in RMR

After multivariate adjustment, including baseline RMR and dietary intervention group, base-

line plasma PFAS concentrations, especially for PFOS and PFNA, were significantly associated

with a greater decline in RMR during the weight-loss period (first 6 months) and a lower

increase in RMR during the weight regain period (6–24 months). During the first 6 months,

comparing the highest to the lowest tertiles, the least-square means (SEs) of RMR change were

−45.4 (15.5) versus −5.0 (16.3) kcal/day for PFOS (Ptrend = 0.005) and −49.8 (15.9) versus −3.3

(16.1) kcal/day for PFNA (Ptrend = 0.002) (Model 3 in Table 4). During the period of 6–24

months, comparing the highest to the lowest tertiles, the least-square means (SEs) of RMR

change were 0.9 (26.2) versus 94.6 (27.5) kcal/day for PFOS (Ptrend < 0.001); 12.7 (28.1) versus

69.3 (27.3) kcal/day for PFOA (Ptrend = 0.03); 24.6 (28.5) versus 81.5 (27.5) kcal/day for PFHxS

(Ptrend = 0.03); 14.1 (27.7) versus 73.7 (27.6) kcal/day for PFNA (Ptrend = 0.02); and 23.1 (27.6)
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Table 2. Changes in body weighta according to tertiles of PFAS concentrations.

PFAS Tertile of PFAS concentration (ng/ml) Ptrend Pcontinuous
b

Tertile 1 Tertile 2 Tertile 3

Weight change (kg) during first 6 months; total n = 621

PFOS <19.2 19.2–32.1 >32.1

Median (IQR) 13.3 (9.7–16.2) 24.4 (21.4–28.5) 47.1 (37.0–58.8)

Model 1 (unadjusted) −5.2 ± 0.4 −7.1 ± 0.4 −7.0 ± 0.4 0.01 0.02

Model 2 −4.7 ± 0.6 −5.5 ± 0.6 −5.3 ± 0.6 0.27 0.99

Model 3 −5.0 ± 0.6 −5.7 ± 0.6 −5.3 ± 0.6 0.63 0.59

PFOA <3.7 3.7–5.5 >5.5

Median (IQR) 2.8 (2.2–3.4) 4.5 (4.1–4.9) 7.1 (6.3–8.3)

Model 1 (unadjusted) −5.7 ± 0.4 −6.6 ± 0.4 −6.9 ± 0.4 0.05 0.02

Model 2 −5.3 ± 0.6 −5.1 ± 0.6 −5.1 ± 0.6 0.73 0.70

Model 3 −5.5 ± 0.6 −5.4 ± 0.6 −5.0 ± 0.6 0.41 0.39

PFHxS <1.8 1.8–3.1 >3.1

Median (IQR) 1.2 (0.8–1.5) 2.4 (2.1–2.7) 4.3 (3.6–5.5)

Model 1 (unadjusted) −5.7 ± 0.4 −6.5 ± 0.4 −7.0 ± 0.4 0.01 0.02

Model 2 −5.3 ± 0.6 −5.1 ± 0.6 −5.1 ± 0.6 0.76 0.45

Model 3 −5.6 ± 0.6 −5.1 ± 0.6 −5.2 ± 0.7 0.54 0.22

PFNA <1.1 1.1–2.0 >2.0

Median (IQR) 0.89 (0.74–1.0) 1.5 (1.3–1.7) 3.0 (2.4–4.0)

Model 1 (unadjusted) −5.3 ± 0.4 −6.9 ± 0.4 −7.0 ± 0.4 0.01 0.01

Model 2 −4.7 ± 0.6 −5.4 ± 0.6 −5.4 ± 0.6 0.18 0.29

Model 3 −5.0 ± 0.6 −5.5 ± 0.6 −5.5 ± 0.6 0.35 0.54

PFDA <0.31 0.31–0.47 >0.47

Median (IQR) 0.24 (0.19–0.28) 0.37 (0.34–0.42) 0.61 (0.52–0.75)

Model 1 (unadjusted) −6.0 ± 0.4 −6.4 ± 0.4 −6.8 ± 0.4 0.18 0.21

Model 2 −5.0 ± 0.6 −5.1 ± 0.6 −5.4 ± 0.6 0.49 0.45

Model 3 −5.2 ± 0.6 −5.3 ± 0.6 −5.5 ± 0.6 0.56 0.76

Weight change (kg) during 6–24 months; total n = 520

PFOS

Model 1 (unadjusted) 1.6 ± 0.4 3.3 ± 0.4 3.2 ± 0.4 0.003 0.01

Model 2 1.8 ± 0.6 3.4 ± 0.6 3.3 ± 0.6 0.009 0.03

Model 3 1.5 ± 0.6 3.5 ± 0.6 3.2 ± 0.6 0.007 0.02

PFOA

Model 1 (unadjusted) 1.8 ± 0.4 3.3 ± 0.4 3.0 ± 0.4 0.03 0.04

Model 2 2.2 ± 0.6 3.6 ± 0.6 3.0 ± 0.6 0.16 0.12

Model 3 1.8 ± 0.6 3.6 ± 0.6 2.9 ± 0.6 0.07 0.06

PFHxS

Model 1 (unadjusted) 2.4 ± 0.4 2.5 ± 0.4 3.1 ± 0.4 0.26 0.42

Model 2 2.6 ± 0.6 2.7 ± 0.6 3.2 ± 0.6 0.32 0.49

Model 3 2.4 ± 0.6 2.7 ± 0.6 3.3 ± 0.7 0.18 0.21

PFNA

Model 1 (unadjusted) 1.7 ± 0.4 2.9 ± 0.4 3.5 ± 0.4 <0.001 0.001

Model 2 2.0 ± 0.6 3.1 ± 0.6 3.4 ± 0.6 0.01 0.01

Model 3 1.8 ± 0.6 3.3 ± 0.6 3.5 ± 0.6 0.007 0.008

PFDA

Model 1 (unadjusted) 2.1 ± 0.4 2.9 ± 0.4 3.1 ± 0.4 0.05 0.06

Model 2 2.3 ± 0.6 3.0 ± 0.6 3.1 ± 0.6 0.16 0.14

(Continued)
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versus 66.5 (28.2) kcal/day for PFDA (Ptrend = 0.09) (Model 3 in Table 4). The results were sim-

ilar when PFAS concentrations were treated as continuous variables (Table 4). When adjusting

for RMR at 6 months (instead of RMR at baseline), the results maintained statistical signifi-

cance. When changes in RMR or changes in thyroid hormones during the first 6 months were

Table 2. (Continued)

PFAS Tertile of PFAS concentration (ng/ml) Ptrend Pcontinuous
b

Tertile 1 Tertile 2 Tertile 3

Model 3 2.0 ± 0.6 3.0 ± 0.6 3.2 ± 0.6 0.05 0.06

Model 1, unadjusted; Model 2, adjusted for age, sex, race, baseline BMI, education, smoking status, alcohol consumption, physical activity, and dietary intervention

group; Model 3, further adjusted for baseline free T3 and free T4 levels.
aData are least-square means ± standard errors calculated from general linear models.
bPFAS levels were log10-transformed before analysis.

PFAS, perfluoroalkyl substance; PFDA, perfluorodecanoic acid; PFHxS, perfluorohexanesulfonic acid; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid;

PFOS, perfluorooctanesulfonic acid; T3, triiodothyronine; T4, thyroxine.

https://doi.org/10.1371/journal.pmed.1002502.t002

Table 3. Sex-stratified analyses of changes in body weight according to baseline plasma PFAS concentrations.

PFAS Sex Tertile of PFAS concentrationa Ptrend Pinteraction

Tertile 1 Tertile 2 Tertile 3

Weight change (kg) during first 6 months

PFOS Men −4.7 ± 1.3 −6.2 ± 1.3 −5.1 ± 1.2 0.91 0.61

Women −4.7 ± 0.7 −5.2 ± 0.7 −5.1 ± 0.7 0.49

PFOA Men −6.2 ± 1.3 −4.9 ± 1.2 −4.7 ± 1.2 0.26 0.34

Women −4.7 ± 0.7 −5.5 ± 0.7 −4.9 ± 0.7 0.65

PFHxS Men −5.4 ± 1.4 −5.3 ± 1.2 −4.8 ± 1.3 0.56 0.84

Women −5.1 ± 0.7 −4.6 ± 0.7 −5.1 ± 0.8 0.85

PFNA Men −5.0 ± 1.2 −6.0 ± 1.2 −4.7 ± 1.2 0.76 0.73

Women −4.4 ± 0.7 −4.8 ± 0.7 −5.5 ± 0.7 0.10

PFDA Men −5.2 ± 1.2 −5.5 ± 1.2 −4.8 ± 1.3 0.70 0.51

Women −4.6 ± 0.8 −4.6 ± 0.7 −5.5 ± 0.7 0.16

Weight change (kg) during 6–24 months

PFOS Men 1.2 ± 1.1 3.4 ± 1.2 2.5 ± 1.1 0.34 0.50

Women 2.1 ± 0.9 4.1 ± 0.9 4.0 ± 0.8 0.01

PFOA Men 1.6 ± 1.1 3.1 ± 1.1 1.6 ± 1.1 0.78 0.04

Women 2.2 ± 0.8 4.2 ± 0.9 4.3 ± 0.9 0.007

PFHxS Men 3.5 ± 1.2 1.5 ± 1.1 1.4 ± 1.1 0.17 0.01

Women 2.7 ± 0.8 3.6 ± 0.9 4.9 ± 0.9 0.009

PFNA Men 1.4 ± 1.1 3.4 ± 1.1 2.2 ± 1.1 0.48 0.31

Women 2.5 ± 0.9 2.9 ± 0.9 4.7 ± 0.9 0.006

PFDA Men 1.6 ± 1.1 3.2 ± 1.1 1.8 ± 1.2 0.75 0.33

Women 2.5 ± 0.9 3.1 ± 0.9 4.2 ± 0.8 0.03

Data are least-square means ± standard errors calculated from general linear models, with adjustment for age, race, baseline BMI, education, smoking status, alcohol

consumption, physical activity, dietary intervention group, and baseline free T3 and free T4 levels. Participants included 237 men and 384 women in the first 6 months,

and 202 men and 318 women during the period of 6–24 months.
aThe cutoffs for each PFAS were the same as those in Table 2.

PFAS, perfluoroalkyl substance; PFDA, perfluorodecanoic acid; PFHxS, perfluorohexanesulfonic acid; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid;

PFOS, perfluorooctanesulfonic acid; T3, triiodothyronine; T4, thyroxine.

https://doi.org/10.1371/journal.pmed.1002502.t003

Perfluoroalkyl Substances and Body Weight Change

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002502 February 13, 2018 10 / 21

https://doi.org/10.1371/journal.pmed.1002502.t002
https://doi.org/10.1371/journal.pmed.1002502.t003
https://doi.org/10.1371/journal.pmed.1002502


Fig 1. Trajectory of changes in body weight in men and women according to tertiles of PFAS concentrations. Data

are least-square means, adjusted for age, race, education, smoking, alcohol consumption, physical activity, menopausal

status (women only), hormone replacement therapy (women only), dietary intervention group, baseline free T3 and free T4

levels, and baseline BMI. PFAS, perfluoroalkyl substance; PFDA, perfluorodecanoic acid; PFHxS, perfluorohexanesulfonic

acid; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; T3,

triiodothyronine; T4, thyroxine.

https://doi.org/10.1371/journal.pmed.1002502.g001
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Table 4. Changes in resting metabolic rate (RMR)a according to tertiles of PFAS levels at baseline.

PFAS Tertile of PFAS concentration Ptrend Pcontinuous
b

T1 T2 T3

RMR change (kcal/day) during first 6 months; total n = 556

PFOS

Model 1 (unadjusted) −39.1 ± 10.4 −79.5 ± 10.2 −99.3 ± 10.1 <0.001 <0.001

Model 2 6.9 ± 15.6 −21.3 ± 15.7 −48.6 ± 14.8 <0.001 <0.001

Model 3 −5.0 ± 16.3 −24.7 ± 16.5 −45.4 ± 15.5 0.005 0.02

PFOA

Model 1 (unadjusted) −58.9 ± 10.4 −67.0 ± 10.2 −93.8 ± 10.4 0.02 0.03

Model 2 −21.4 ± 15.5 −18.2 ± 15.9 −31.3 ± 15.5 0.48 0.37

Model 3 −33.8 ± 16.2 −21.7 ± 16.4 −26.2 ± 16.2 0.61 0.86

PFHxS

Model 1 (unadjusted) −47.6 ± 10.4 −67.8 ± 10.1 −103.7 ± 10.3 <0.001 0.005

Model 2 −11.9 ± 15.4 −22.4 ± 15.5 −42.3 ± 16.0 0.04 0.20

Model 3 −23.3 ± 16.1 −21.6 ± 15.9 −41.0 ± 16.8 0.25 0.75

PFNA

Model 1 (unadjusted) −33.3 ± 10.3 −77.0 ± 10.0 −108.2 ± 10.2 <0.001 <0.001

Model 2 8.1 ± 15.3 −24.3 ± 15.4 −54.6 ± 15.1 <0.001 <0.001

Model 3 −3.3 ± 16.1 −27.5 ± 16.2 −49.8 ± 15.9 0.002 0.003

PFDA

Model 1 (unadjusted) −64.2 ± 10.5 −60.4 ± 10.2 −95.2 ± 10.4 0.03 0.01

Model 2 −8.8 ± 15.7 −15.7 ± 15.5 −43.1 ± 15.2 0.01 0.002

Model 3 −17.5 ± 16.6 −19.4 ± 15.9 −42.1 ± 15.8 0.09 0.05

RMR change (kcal/day) during 6–24 months; total n = 393

PFOS

Model 1 (unadjusted) 102.6 ± 16.5 82.5 ± 16.3 16.9 ± 16.6 <0.001 <0.001

Model 2 108.3 ± 27.4 83.3 ± 28.1 17.2 ± 26.0 <0.001 <0.001

Model 3 94.6 ± 27.5 67.3 ± 28.3 0.9 ± 26.2 <0.001 0.001

PFOA

Model 1 (unadjusted) 86.8 ± 16.7 80.5 ± 16.2 33.3 ± 17.1 0.03 0.02

Model 2 82.4 ± 26.9 73.9 ± 27.9 27.7 ± 27.8 0.03 0.03

Model 3 69.3 ± 27.3 54.9 ± 27.7 12.7 ± 28.1 0.03 0.04

PFHxS

Model 1 (unadjusted) 108.7 ± 16.7 47.6 ± 16.4 47.7 ± 16.6 0.01 0.01

Model 2 100.3 ± 27.1 37.8 ± 27.2 39.1 ± 28.3 0.02 0.02

Model 3 81.5 ± 27.5 27.9 ± 27.1 24.6 ± 28.5 0.03 0.04

PFNA

Model 1 (unadjusted) 88.6 ± 16.9 78.3 ± 15.8 33.0 ± 17.3 0.02 0.003

Model 2 83.8 ± 27.5 76.7 ± 27.3 27.9 ± 27.4 0.03 0.004

Model 3 73.7 ± 27.6 53.3 ± 27.6 14.1 ± 27.7 0.02 0.002

PFDA

Model 1 (unadjusted) 91.5 ± 16.4 63.5 ± 16.3 45.7 ± 17.4 0.05 0.06

Model 2 88.6 ± 27.7 61.8 ± 27.4 40.3 ± 27.2 0.05 0.07

Model 3 66.5 ± 28.2 55.0 ± 27.2 23.1 ± 27.6 0.09 0.08

Model 1, unadjusted; Model 2, adjusted for age, sex, race, baseline RMR, education, smoking status, alcohol consumption, physical activity, and dietary intervention

group; Model 3, further adjusted for baseline free T3 and free T4 levels.
aData are least-square means ± standard errors calculated from general linear models.
bPFAS levels were log10-transformed before analysis.

PFAS, perfluoroalkyl substance; PFDA, perfluorodecanoic acid; PFHxS, perfluorohexanesulfonic acid; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid;

PFOS, perfluorooctanesulfonic acid; RMR, resting metabolic rate; T3, triiodothyronine; T4, thyroxine.

https://doi.org/10.1371/journal.pmed.1002502.t004
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further adjusted for, the results remained largely unchanged. In the sex-stratified analysis, sim-

ilar results were observed, although some associations did not reach statistical significance,

possibly due to diminished power (S4 Table). No interaction between PFASs and sex on RMR

changes was detected. The trajectory of changes in RMR among total participants according to

tertiles of PFAS concentrations is shown in Fig 2. In addition, similar results were demon-

strated when analyses were stratified by dietary intervention group.

Baseline PFASs and changes in other metabolic parameters

During the weight-loss period, after multivariate adjustment including baseline levels of each

metabolic parameter, plasma concentrations of PFOS, PFNA, and PFDA were inversely associ-

ated with changes in visceral fat mass (rs ranged from −0.19 to −0.27, all P< 0.05), and base-

line PFOA was inversely associated with changes in HDL cholesterol (rs = −0.12, P< 0.01) (S5

Table). During the weight regain period, baseline PFOS, PFNA, and PFDA levels were posi-

tively associated with changes in some of the parameters, including waist circumference,

Fig 2. Trajectory of changes in RMR of all participants according to tertiles of PFAS concentrations. Data were adjusted for age,

sex, race, education, smoking, alcohol consumption, physical activity, menopausal status (women only), hormone replacement

therapy (women only), dietary intervention group, baseline free T3 and free T4 levels, and baseline RMR. LS, least-square; PFAS,

perfluoroalkyl substance; PFDA, perfluorodecanoic acid; PFHxS, perfluorohexanesulfonic acid; PFNA, perfluorononanoic acid;

PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; RMR, resting metabolic rate; T3, triiodothyronine; T4, thyroxine.

https://doi.org/10.1371/journal.pmed.1002502.g002
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insulin, and leptin (rs ranged from 0.10 to 0.15, all P< 0.05), and baseline PFOA and PFHxS

were associated with a greater increase in visceral fat mass (rs = 0.30 and 0.27, respectively;

both P< 0.05) (S5 Table). The results were largely similar when analyses were stratified by sex.

In sensitivity analyses, the results did not materially change when further adjusting for study

location (Boston or Baton Rouge) or participant compliance (number of sessions participants

attended). The table in S1 Text shows the associations of baseline PFASs with gene expression

in adipose tissue.

Discussion

In this 2-year randomized weight-loss trial, we found that higher baseline plasma PFAS con-

centrations were not associated with weight loss induced by energy restriction, but were signif-

icantly associated with a greater weight regain, primarily among women, during the follow-up

period between 6 and 24 months. In addition, after multivariate adjustment, higher baseline

PFAS levels were significantly associated with a greater decrease in RMR during the weight-

loss period and a lower increase in RMR during the weight regain period.

Comparison with other studies

To date, evidence on the influence of PFAS exposure on body weight change and metabolic

parameters has been limited and has been primarily generated from cross-sectional studies

that could not establish causal relationships [30,44–47]. In addition, the causes of weight

change are likely heterogeneous (including diet, physical activity, and medications) and often

not well understood in observational studies. Prospective evidence linking PFAS exposure

with body weight regulation was primarily from studies that examined prenatal or early life

exposures to PFASs in relation to body weight later in life, and the results were somewhat

mixed [21–27,48,49]. For example, in 3 birth cohort studies conducted in European popula-

tions, maternal concentrations of PFASs were significantly associated with offspring body

weight and other anthropometric and metabolic traits, primarily among girls [21,23,25]. How-

ever, other studies generated inconsistent findings regarding maternal PFAS exposure and off-

spring BMI or obesity risk, with no sex difference [22,24,49]. In addition, recently, in the

European Youth Heart Study, Domazet et al. demonstrated that higher plasma PFOS concen-

trations during childhood, but not adolescence, were associated with greater adiposity in ado-

lescence and young adulthood [48].

To our knowledge, the current investigation is among the first studies in adults to evaluate

the associations of PFAS exposures with changes in body weight and metabolic parameters

induced during a controlled weight-loss trial. All individual PFASs were significantly associ-

ated with more weight regain in women, but not in men, which was in agreement with previ-

ous studies in which the intergenerational effects of PFASs on body weight were observed only

in girls and not in boys [21,25,26]. Although the reasons for these gender-specific findings are

still unclear, accumulating evidence from experimental research suggests that PFASs are able

to interfere with estrogen metabolism and functionalities [12,50,51]. As potential endocrine

disruptors, PFASs might reduce estradiol production and the expression of some key genes

related to estrogen synthesis [12], or influence estradiol concentrations through pathways such

as hepatic aromatase induction, with an initial inhibition and a later stimulation [50]. Using in

vitro and in silico species comparison approaches, Benninghoff et al. reported that PFASs may

interact directly with estrogen receptors, suggesting that PFASs could act as weak environmen-

tal xenoestrogens [51]. The experimental evidence implies that the detrimental effects of

PFASs can be sex-specific, thus supporting the notion that women may be particularly vulner-

able to obesogenic effects of PFASs. In addition, it is worth noticing that women generally
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have a higher percentage of body fat than men [52]. Given that fat-free mass could substan-

tially influence RMR, the difference in body composition between men and women could

result in significant differences in energy homeostasis dynamics [52].

In addition to the adverse effects of PFASs on estrogen-related pathways, animal studies

suggest that PFOA and PFOS may also interfere with energy homeostasis and the endocrine

system through other mechanisms [14,15,18,53], including the activation of PPARα and

PPARγ [18,19], key regulators in fatty acid oxidation, differentiation and normal function of

adipocytes, and glucose metabolism [20,54]. An experiment on human liver cells suggested

that PFOA could alter the expression of proteins regulated by hepatocyte nuclear factor 4α
[55], which is a key regulator of lipid metabolism and gluconeogenesis [56]. In addition, some

animal studies have suggested that PFAS exposure might disrupt thyroid hormone homeosta-

sis, possibly via influencing uridine diphosphoglucuronosyl transferases and type 1 deiodinase

[17,57]. Of note, due to the species-specific toxicokinetics (e.g., the elimination half-lives are

3–8 years in humans and 17–30 days in mice and monkeys) and tissue distribution of PFASs

[18], caution is needed when extrapolating findings from animal studies to humans. In addi-

tion, mechanisms need to be elucidated to interpret the findings that higher baseline PFASs,

especially PFOS and PFNA, were associated with changes in RMR, which is a major determi-

nant of weight maintenance, in both men and women [58,59]. Finally, whether the 5 major

PFASs might have different biological mechanisms and perhaps exert additive or synergistic

effects also warrants further exploration.

Strengths and limitations of study

The primary strength of the current study is that the cause of weight changes was well charac-

terized. Unlike previous observational studies in which reasons for weight changes were usu-

ally unknown, this weight-loss trial applied energy restriction to induce the weight changes.

Moreover, repeated measurements of body weight, RMR, thyroid hormones, leptin, and other

metabolic biomarkers allowed documentation of longitudinal associations between PFAS

exposures and changes in these parameters during the weight-loss and weight regain periods.

Several limitations should be considered as well. First, although we included men and

women with a wide range of ages (30–70 years), participants in the current study were other-

wise relatively homogeneous in terms of health status and body fatness because they were

selected following narrow inclusion criteria. Therefore, it is unclear whether our findings can

be extrapolated to more general populations. Second, we measured only the baseline plasma

PFAS concentrations. However, given the long elimination half-lives (3–8 years) of these

chemicals [36] and a strong stability over time observed in our pilot study, concentrations in

the blood likely reflect relatively long-term PFAS exposures. Moreover, unlike many other per-

sistent organic pollutants, PFASs are not lipophilic, and blood concentrations are therefore

not affected by changes in the size of the lipid compartment [60]. Third, we did not measure

ghrelin, an orexigenic hormone regulating appetite, RMR, and other key physiological pro-

cesses related to weight changes [61], and the interrelationship between PFASs and ghrelin

during weight changes needs to be elucidated. Fourth, we did not apply Bonferroni correction

in the analyses given the inter-correlation between the PFASs (rs ranged from 0.4 to 0.9),

and the role of multiple testing could not be entirely excluded. Fifth, physical activity was

assessed using the Baecke questionnaire, which might be subject to measurement errors,

although a validation study conducted in US adults has shown reasonable validity of this ques-

tionnaire [62]. In addition, although some covariates including education, smoking status, and

physical activity were adjusted for in our study, we could not entirely exclude the possibility

that unmeasured or residual confounding by socioeconomic and psychosocial factors, as well
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as participants’ usual diet, might partially account for the associations we observed. One par-

ticular concern is that PFASs are extensively used in food packaging due to their oil- and

water-repellant characteristics [32]. If some participants relapsed to their usual pre-randomi-

zation diet and this diet was rich in foods that are contaminated by PFASs through food pack-

aging and are also dense in energy, they might thus have gained weight faster. However, when

we further controlled for the frequency of craving hamburgers, French fries, or donuts at base-

line assessed using a questionnaire, the results were largely unchanged. In addition, humans

are exposed to PFASs through multiple pathways, including drinking water and contaminated

seafood [31], although these factors are not established risk factors for weight gain. Moreover,

we adjusted for the number of study sessions that participants attended, which is a measure-

ment of compliance to the prescribed diet. Finally, lipophilic persistent pollutants with obeso-

genic effects (such as hexachlorobenzene [HCB] and dichlorodiphenyldichloroethylene

[DDE]) might have confounded the associations of PFASs with changes in body weight and

RMR. However, in 793 women participating in the Nurses’ Health Study II, weak associations

were observed between PFASs and lipophilic persistent pollutants (e.g., the rs of PFOA and

PFOS with HCB was 0.07 and 0.06, respectively, and the rs of PFOA and PFOS with DDE was

0.05 and 0.06, respectively), suggesting that confounding by these pollutants would not be

substantial.

Implications of findings

Our study provides the first piece of evidence from a controlled weight-loss trial that higher

baseline plasma PFAS concentrations in adults are associated with a greater weight regain,

especially in women, possibly due to suppressed RMR levels. These findings imply that over-

weight and obese individuals with relatively low PFAS exposures might potentially benefit

more from weight-loss interventions. Although the production of PFOS and PFOA in the US

has largely been phased out [31,63], the production of other PFASs, such as PFNA, may con-

tinue or even increase, especially in developing countries [64]. Given the persistence of these

PFASs in the environment and the human body, their potential adverse effects remain a public

health concern.

Conclusions

In a diet-induced weight-loss setting among overweight and obese individuals, higher baseline

plasma PFAS concentrations were significantly associated with greater weight regain, espe-

cially in women, accompanied by a slower regression of RMR. These findings suggest that

environmental chemicals may play a role in the current obesity epidemic. More studies are

warranted to elucidate the mechanisms underlying the link between PFAS exposure and

weight regulation in humans.
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