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Abstract
Consumer	demand	for	milk	and	meat	from	grass-	fed	cattle	is	growing,	driven	mostly	
by	perceived	health	benefits	and	concerns	about	animal	welfare.	In	a	U.	S.-	wide	study	
of	1,163	milk	samples	collected	over	3	years,	we	quantified	the	fatty	acid	profile	in	
milk	from	cows	fed	a	nearly	100%	forage-	based	diet	(grassmilk)	and	compared	it	to	
profiles	from	a	similar	nationwide	study	of	milk	from	cows	under	conventional	and	
organic	management.	We	also	explored	how	much	the	observed	differences	might	
help	reverse	the	large	changes	in	fatty	acid	intakes	that	have	occurred	in	the	United	
States	over	the	last	century.	Key	features	of	the	fatty	acid	profile	of	milk	fat	include	
its	omega-	6/omega-	3	ratio	(lower	is	desirable),	and	amounts	of	total	omega-	3,	conju-
gated	linoleic	acid,	and	long-	chain	omega-	3	polyunsaturated	fatty	acids.	For	each,	we	
find	that	grassmilk	is	markedly	different	than	both	organic	and	conventional	milk.	The	
omega-	6/omega-	3	 ratios	were,	 respectively,	 0.95,	 2.28,	 and	 5.77	 in	 grassmilk,	 or-
ganic,	 and	 conventional	 milk;	 total	 omega-	3	 levels	 were	 0.049,	 0.032,	 and	
0.020	g/100	g	 milk;	 total	 conjugated	 linoleic	 acid	 levels	 were	 0.043,	 0.023,	 and	
0.019	g/100	g	 milk;	 and	 eicosapentaenoic	 acid	 levels	 were	 0.0036,	 0.0033,	 and	
0.0025	g/100	g	milk.	Because	of	often	high	per-	capita	dairy	consumption	relative	to	
most	other	sources	of	omega-	3	fatty	acids	and	conjugated	linoleic	acid,	these	differ-
ences	in	grassmilk	can	help	restore	a	historical	balance	of	fatty	acids	and	potentially	
reduce	 the	 risk	of	 cardiovascular	 and	other	metabolic	diseases.	Although	oily	 fish	
have	superior	concentrations	of	long-	chain	omega-	3	fatty	acids,	most	fish	have	low	
levels	of	α-	linolenic	acid	(the	major	omega-	3),	and	an	omega-	6/omega-	3	ratio	near	7.	
Moreover,	fish	is	not	consumed	regularly,	or	at	all,	by	~70%	of	the	U.	S.	population.
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1  | INTRODUC TION

Nearly	half	of	Americans	suffer	from	one	or	more	diet-	driven	chronic	
conditions	 including	cardiovascular	disease	 (CVD),	overweight	and	
obesity,	 and	 diabetes	 (DHHS,	 2015;	 Massiera	 et	al.,	 2010;	 FDA,	
2015;	ARS,	2010).	Seven	of	 the	10	 leading	causes	of	death	 in	 the	
United	States	were	diet-	related	in	2013	(IHME,	2016a),	and	none	are	
curable	via	medical	intervention	alone,	despite	health	care	spending	
in	the	United	States	that	is	the	highest	per	capita	in	the	world	(IHME,	
2016b).	These	sober	facts	are	among	the	reasons	why	there	is	grow-
ing	interest	in	the	United	States	among	scientists	and	consumers	in	
altering	diets	to	prevent	or	slow	the	progression	of	metabolic,	car-
diovascular,	and	other	chronic	diseases.

Potential	diet	alterations	include	reducing	intakes	of	omega-	6	(ω- 
6)	fatty	acids	(FAs)	and	increasing	intakes	of	omega-	3	(ω-	3)	FAs,	thus	
decreasing	dietary	ω- 6/ω-	3	ratios.	These	ratios	have	become	histori-
cally	high	in	Western	diets	during	the	last	century,	reaching	about	15,	
compared	to	estimated	evolutionary	ratios	near	1	(Hibbeln,	Nieminen,	
Blasbalg,	 Riggs,	 &	 Lands,	 2006;	 Simopoulos,	 2006).	 These	 large	
changes	are	due	to	both	increased	intakes	of	ω-	6	FAs	and	decreased	
intakes	of	ω-	3	FAs.	Modern	grain	feeding	of	farm	animals	has	contrib-
uted to these ω-	6	increases	and	ω-	3	decreases	in	Western	diets.

The	more	natural	FA	profile	of	organic	and	grass-	fed	meat	and	
milk	has	 received	much	attention	 in	 recent	years	 (Średnicka-	Tober	
et	al.,	2016a,b).	The	FA	profile	in	modern	meat	and	milk	can	be	sub-
stantially	 changed	 by	 shifting	 animals	 from	 grain-		 or	 concentrate-	
rich	 rations	 to	 diets	 largely	 based	 on	 grass	 and	 legume	 forages	
(Butler	et	al.,	2011;	Daley,	Abbott,	Doyle,	Nader,	&	Larson,	2010;	O’	
Callaghan	et	al.,	2016;	Schwendel	et	al.,	2015;	Stergiadis	et	al.,	2012).	
This	shift	increases	ω-	3	FAs	and	conjugated	linoleic	acid	(CLA)	and	
decreases	ω-	6	FAs	in	meat	and	milk,	changes	that	may	help	prevent	
CVD	 and	 other	 chronic	 conditions	 (Leikin-Frenkel,	 2016;	 Hibbeln	
et	al.,	2006;	Simopoulos,	2006).	The	magnitude	of	these	changes	is	
markedly	greater	than	most	of	the	nutritional	differences	between	
organically	and	conventionally	grown	plant-	based	foods	(Benbrook,	
Butler,	Latif,	Leifert,	&	Davis,	2013;	Baranski	et	al.,	2014;	Średnicka-	
Tober	et	al.,	2016a,b).

There	is	rising	demand	for	beef	and	dairy	products	from	grass-	fed	
cattle.	In	2016,	natural-	food	retail	leader	Whole	Foods	Market	iden-
tified	grass-	fed	meat	and	dairy	as	a	 top	 trend,	based	on	consumer	
interest	and	rapid	sales	growth	(PR	Newswire,	2016;	Whole	Foods	
Market	 Blog,	 2015).	 Three-	quarters	 of	 self-	identified	 natural-	food	
and	organic	consumers	purchase	grass-	fed	beef	and	dairy	 (Market	
Lohas,	2016).	Similar	 interests	 in	human	health	and	animal	welfare	
led	 in	 2015	 to	 the	marketing	 in	 Italy,	 and	 later	Mexico,	 of	 “Latte	
Nobile”	(Noble	Milk),	produced	by	cows	fed	primarily	grass	and	hay	
(Renna	et	al.,	2015;	Lombardi	et	al.,	2014;	Associazione	Latte	Nobile	
Italiano	(http://www.lattenobile.it/).

1.1 | Launch of grassmilk brand

The	Wisconsin-	based	cooperative	CROPP	is	the	leading	U.S.	supplier	
of	organic	milk.	In	2011,	CROPP	launched	a	new,	whole	milk,	organic	

product	called	Grassmilk.TM	This	milk	comes	from	cows	fed	a	nearly	
100%	forage-	based	diet.	The	only	exception	is	certain	mineral	and	en-
ergy	supplements,	such	as	molasses.	In	this	paper,	the	term	“grassmilk”	
refers	to	CROPP’s	product,	and	“grass	milk”	refers	to	other	brands	of	
milk	from	cows	fed	a	nearly	100%	forage-	based	ration.

Besides	prohibiting	grain	 in	cow	rations,	CROPP	sets	grassmilk	
standards	for	pasture	access,	supplemental	 feeds,	and	animal	care	
(see	 Appendix	 for	 details).	 Farmers	 in	 the	 grassmilk	 program	 re-
ceive	a	price	premium	of	~15%	compared	to	the	organic	milk	price.	
CROPP	closely	monitors	the	FA	content	of	raw	grassmilk,	to	assure	
compliance	with	its	minimum	requirements	of	(1)	39	to	41	mg	total	
ω-	3	FA/100	g	of	milk,	depending	on	geographical	region,	(2)	26.6	to	
32.8	mg	total	CLA/100	g	of	milk,	and	(3)	an	ω- 6/ω-	3	ratio	≤	1.2.

The	 number	 of	 farms	 shipping	 grassmilk	 to	 CROPP	 proces-
sors	 has	 grown	 from	 five	 California	 producers	 in	 2011	 to	 140	
farms	throughout	the	United	States	at	the	end	of	2016.	These	140	
farms	 represented	 about	 9%	 of	 CROPP’s	 1,618	 dairy-	farm	 mem-
bers	(CROPP,	2016).	Milk,	yogurt,	and	cheese	made	from	grassmilk	
are	marketed	under	CROPP’s	Organic	Valley	brand.	 In	 addition	 to	
meeting	USDA’s	organic	grazing	standard	(Rinehart	&	Baier,	2011),	
CROPP’s	grassmilk	suppliers	may	not	feed	grain	or	silage	from	grain	
crops	harvested	from	fields	 that	have	reached	the	“boot”	stage	of	
development	(when	seed	heads	form	and	start	to	fill	out).	Nongrain	
supplements	including	molasses,	alfalfa	pellets,	sugar	beets	(chipped	
or	whole),	mineral	 supplements,	 and	kelp	are	allowed	 to	meet	 the	
energy	needs	of	lactating	cows	and	support	animal	health.

Some	supplemental	feed	is	often	needed	to	sustain	cow	health	
during	 months	 of	 peak	 production,	 or	 when	 high-	quality,	 forage	
feeds	 are	 not	 available	 in	 sufficient	 quantity.	 Despite	 reliance	 on	
some	supplemental	feeds,	forage-	based	feeds	make	up	the	vast	ma-
jority	of	annual	Dry	Matter	Intake	(DMI)	on	grassmilk	farms.

Farmers	in	the	grassmilk	program	are	also	required	to	document	
that	lactating	cows	consume	over	60%	of	DMI	from	pasture	during	
the	 grazing	 season	 (compared	 to	 30%	 under	 the	 USDA	 organic	
standard),	with	a	grazing	season	of	at	 least	150	days	(compared	to	
120	days	under	federal	organic	rules).	The	length	of	the	grazing	sea-
son	can	be	reduced	 in	cases	of	extreme	drought	or	other	weather	
events	 or	 natural	 disasters,	 or	 by	 the	 tolerance	 of	 soils	 to	 animal	
traffic.

The	nongrazing	portion	of	rations	on	grassmilk	farms	must	come	
from	 conserved,	 organic,	 forage-	based	 feeds,	 including	 dried	 or	
fermented	forages	(alfalfa,	clover,	grass	hay,	etc.).	Cereal	crops	har-
vested	prior	to	their	boot	stage,	such	as	barley,	oats,	and	BMR	corn	
(“brown	 mid-	rib”	 phenotypes	 developed	 for	 early	 silage	 harvest),	
can	also	be	 fed,	 as	 the	FA	profile	of	 such	 immature	grain	 crops	 is	
similar	to	widely	grown	grass	species	in	cow	pastures	(see	“Results	
and	Discussion”	for	more	detail).	Harvested	feedstuffs	are	typically	
preserved	by	fermentation	on-	farm	to	produce	baleage	or	silage,	or	
stored	as	dry	hay.

The	mentioned	Noble	Milk	protocol	 requires	at	 least	150	days	
per	year	of	grazing	and	70%	DMI	from	pasture	and	hay	throughout	
the	year,	with	up	to	30%	DMI	from	grains	and	concentrates	allowed.	
Silages,	supplements,	and	genetically	modified	feeds	are	prohibited.	

http://www.lattenobile.it/
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The	milk	fat	must	contain	at	 least	0.25%	of	total	CLA	and	0.5%	of	
total	ω-	3	FAs,	and	the	LA/ALA	ratio	must	be	lower	than	4	year	round	
(Renna	 et	al.,	 2015).	 Pastures	 must	 be	 diverse,	 with	 at	 least	 four	
major	plant	species,	and	the	quality	of	hay	is	monitored	with	a	sen-
sory	analysis	(Rubino,	2014).

Benbrook	et	al.	(2013)	reported	substantial	improvements	in	the	
FA	composition	of	Organic	Valley	whole,	organic	milk,	compared	to	
whole	milk	from	conventionally	managed	cows.	Based	on	12-	month	
averages,	they	found	higher	levels	of	ω-	3	FAs	α-	linolenic	acid	(ALA)	
and	eicosapentaenoic	acid	 (EPA)	of,	 respectively,	+60%	and	+33%.	
There	was	also	18%	more	total	CLA,	and	less	of	the	ω-	6	FAs	linoleic	
acid	(LA)	and	arachidonic	acid	(AA)	(25%	and	17%,	respectively),	re-
sulting	in	a	60%	lower	ω- 6/ω-	3	ratio	(5.77	down	to	2.28).

As	 estimated	 below,	 most	 organic	 milk	 analyzed	 in	 Benbrook	
et	al.	 (2013)	 came	 from	 cows	 receiving	 ~20%	 of	 their	 yearly	DMI	
from	grain-	based	feeds.	On	an	annual	basis,	the	USDA	organic	stan-
dard	 technically	 allows	 up	 to	 ~90%	DMI	 from	 sources	 other	 than	
grazing	(as	only	30%	of	DMI	must	come	from	grazing	during	a	mini-
mum	of	120	days	per	year),	although	on	most	organic	dairies	in	the	
United	States,	forage-	based	feeds	play	a	much	greater	role	than	is	
minimally	required	(CROPP,	2016;	Rinehart	&	Baier,	2011).

Here,	we	report	the	added	impacts	on	nutritionally	important	FA	
levels	when	lactating	cows	are	fed	a	nearly	100%	forage-	based	diet	
year	 round,	and	we	model	 the	 impact	of	 these	changes	on	 typical	
U.S.	diets.	We	also	compare	the	impacts	of	grassmilk	dairy	products	
and	fish	on	FA	intakes.

2  | METHODS

Milk	FA	analyses	reported	in	this	study	come	from	CROPP’s	quality-	
control	testing	of	its	grassmilk.	Bulk-	tank,	raw	milk	samples	from	each	
participating	farm	(140	in	2016)	were	collected	at	least	bimonthly	in	
sterile	plastic	bottles,	packed	with	ice-	packs,	and	shipped	overnight	
to	 Silliker,	 Inc.,	 an	 ISO/IEC	 17025	 accredited	 laboratory	 in	 Crete,	
Illinois.	 It	 used	 AOAC	method	 996.06,	 as	 revised	 in	 2001	 (AOAC	
International,	 2012),	 with	 modified	 internal	 standard	 (C13:0)	 and	
temperature	program	[initial	T	=	100°	(no	hold),	ramp	2°/min	to	214°	
(hold	 10	min),	 ramp	 3°/min	 to	 240°	 (hold	 16	min)].	 The	 laboratory	
used	 capillary	 column	Supelco	SP-	2560,	100	m	×	0.25	mm,	0.2	μm 
film.	In	units	of	g/100	g	of	milk,	the	laboratory	did	not	quantify	indi-
vidual	FA	amounts	<0.001,	but	it	did	quantify	those	small	amounts	
(if	detected)	 in	units	of	%	of	 total	FA,	 to	give	the	best	measure	of	
total	FA.	This	 laboratory	and	its	methods	and	reports	are	identical	
to	those	used	in	Benbrook	et	al.	(2013).	However,	in	this	paper,	we	
report	amounts	of	additional,	minor	FA	that	were	not	reported	in	the	
2013	paper,	due	to	the	relatively	small	number	of	samples	in	2013.

The	detected	and	summed	isomers	of	reported	total	CLA	include	
cis-	9,	 trans-	11	 (commonly	 75–90%	 of	 the	 total);	 trans-	9,	 trans- 11; 
cis-	9,	cis- 11; trans-	10,	cis-	12;	and	cis-	11,	trans-	13	18:2.	The	reported	
trans-	18:1	includes	mainly	trans-	11	18:1,	vaccenic	acid.

This	study	includes	FA	analyses	of	1,163	raw	milk	samples	col-
lected	monthly	or	bimonthly	during	three	full	years,	2014–2016.	They	

come	primarily	 from	three	 regions	of	 the	United	States—Midwest,	
Northeast,	and	California.	A	small	group	of	samples	came	from	the	
Middle-	Eastern	United	States	beginning	in	June	2016.	For	compari-
son	with	raw	grassmilk,	we	also	report	FA	results	from	69	samples	of	
processed,	whole	grassmilk,	taken	from	pasteurized,	retail	contain-
ers	 (not	 homogenized).	 These	 samples	were	 taken	 in	 a	 systematic	
manner	 similar	 in	 location	and	 season	 to	 the	 raw	milk	 samples.	 In	
2014,	 there	were	 22	 samples—12	 from	 the	Midwest	 and	 10	 from	
California;	in	2015,	there	were	23	samples—five	from	the	Midwest,	
six	from	California,	and	12	from	the	Northeast;	and	in	2016,	there	
were	24	samples—six	from	the	Midwest,	six	from	California,	and	12	
from	the	Northeast.

As	in	the	2013	study	(Benbrook	et	al.,	2013),	we	report	averages	
of three ω- 6/ω-	3	ratios:	LA/ALA,	ω- 6/ω-	3,	and	ω- 3/ω-	6,	where	ω- 6 
includes	seven	FAs	(18:2	LA	+	18:3	γ-	linolenic	(GLA)	+	20:2	eicosa-
dienoic	+	20:3	8,11,14-	eicosatrienoic	+	20:4	arachidonic	(AA)	+	22:2	
docosadienoic	+	22:4	docosatetraenoic),	and	ω-	3	includes	7	FAs	(18:3	
ALA	 +	 18:4	 stearidonic/moroctic	 +	 20:3	 11,14,17-	eicosatrienoic	 +	
20:5	EPA	+	22:3	docosatrienoic	+	22:5	DPA	+	22:6	DHA).	We	include	
the	average	 ratio,	ω- 3/ω-	6,	 for	 comparison	with	other	papers	 that	
report	this	inverted	ratio.

2.1 | Statistical analysis

Digital	laboratory	results	were	transferred	to	an	Excel	spreadsheet	
and	spot-	verified	against	printed	laboratory	reports.	(The	raw	data	
are	 available	 from	MAL	or	DRD.)	 The	 reported	FA	 concentrations	
(g/100	g	of	milk)	in	1,163	raw	milk	samples	were	inspected	for	outli-
ers	by	normal	probability	and	box	plots,	and	five	severe,	high	outliers	
were	excluded,	mostly	by	consensus	among	DRD,	MB,	BH,	and	CMB	
(18:3	γ-	linolenic	=	0.028,	trans-	18:3	=	0.075,	20:1	=	0.070,	11,14,17–
20:3	=	0.040,	and	22:6	DHA	=	0.025,	all	in	g/100	g	of	milk).	We	also	
removed	the	corresponding	values	expressed	as	a	percent	of	total	
FAs.	An	additional	four	outliers	were	found	and	removed	only	in	the	
values	 expressed	 as	 a	 percent	 of	 total	 FA:	 sum	of	 FA	=	102.998%	
(high),	 sum	 of	 saturated	 FA	=	87.690%	 (high),	 18:1	=	0.330%	 (low),	
and	sum	of	cis-	monounsaturated	=	4.89%	(low).	The	removed	values	
represent	in	each	case	only	1	in	1,163	samples	(<0.1%).	No	outliers	
were	found	in	the	69	samples	of	retail	grassmilk.

Means,	 counts,	 standard	 deviations	 (SDs),	 coefficients	 of	 vari-
ation	 (CVs),	and	standard	errors	 (SEs)	were	calculated	 in	Microsoft	
Excel.	We	 report	SDs,	 CVs,	 and	SEs	with	 1	 or	 2	 significant	 digits.	
Because	the	statistical	uncertainty	of	a	mean	is	measured	by	its	SE,	
we	report	means	to	the	same	number	of	decimal	places	as	the	SEs. 
With	sample	counts	as	high	as	1,163,	SEs	and	the	statistical	uncer-
tainty	of	means	can	be	much	smaller	than	the	laboratory	precision	
for	individual	measurements.

Analyses	of	annual,	monthly,	and	regional	variation	in	FA	concen-
trations	used	PROC	MIXED	of	SAS	(SAS	Institute,	2014).	The	fixed	
effects	were	year	of	study,	region	of	the	United	States	 (California,	
Midwest,	Mideast,	and	Northeast),	and	month	of	sampling,	with	farm	
as	a	random	effect	for	repeated	measures.	The	compound	symme-
try	covariance	structure	was	used,	because	it	resulted	in	the	lowest	
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Akaike	 information	criterion	 for	 repeated	measures	 (Littell,	Henry,	
&	Ammerman,	1998).	We	relied	on	the	Satterthwaite	correction	to	
adjust	the	degrees	of	freedom	for	unequal	variances.	All	treatment	
results	are	reported	as	least	squares	means	separated	by	the	Tukey	
procedure	with	significance	declared	at	p < .05.

2.2 | Diet scenarios and LA/ALA ratios

We	modeled	hypothetical	diet	scenarios	based	on	those	in	Benbrook	
et	al.	(2013)	to	test	the	potential	effects	of	switching	whole-	fat	dairy	
products	made	from	conventional	milk,	to	organic	milk,	and,	finally	in	
this	study,	to	grassmilk.	For	these	diets,	we	calculated	overall	dietary	
intakes	of	LA	and	ALA,	 and	 the	LA/ALA	 ratio,	 the	major	determi-
nant	of	the	ω- 6/ω-	3	ratio.	We	could	not	calculate	the	ω- 6/ω-	3	ratio	
itself,	 because	 there	 is	 insufficient	 data	 on	 total	ω-	6	 and	ω-	3	 FAs	
in	most	of	 the	 foods	 in	our	 scenarios.	However,	 the	ω- 6/ω-	3	 ratio	
closely	tracks	the	LA/ALA	ratio,	and	both	ratios	are	historically	high	
in	most	Western	diets,	due	to	increased	ω-	6	intakes	and	decreased	
ω-	3	intakes	(Hibbeln	et	al.,	2006;	Simopoulos,	2006).

Here,	we	use	 the	 same	model	diets	and	assumptions	as	 in	 the	
previous	report	(Table	1	in	Benbrook	et	al.,	2013),	and	add	new	diet	
scenarios	using	dairy	products	with	the	FA	profile	of	grassmilk.	As	
in	Benbrook	et	al.	(2013),	we	use	full-	fat	dairy	products	(except	for	
yogurt),	to	quantify	the	maximum,	realistically	attainable	shift	in	FA	
intakes	 from	 a	 switch	 to	 grass-	milk-	based	 dairy	 products.	 For	 yo-
gurt,	we	use	the	highest-	fat	form	generally	consumed	in	the	United	
States,	sweetened	“low-	fat”	yogurt	with	fruit,	containing	1.41	g	fat	
per	100	g.	Sweetened	whole-	fat	yogurt	is	not	usually	available.

We	modeled	diets	 for	a	moderately	active	woman,	age	19–30,	
consuming	 2,100	kcal/day.	 In	 three	main	 scenarios,	 20%,	 33%,	 or	
45%	of	that	energy	came	from	fat.	Within	those	scenarios,	we	con-
structed	diets	that	contain	either	moderate	amounts	of	dairy	prod-
ucts	(three	daily	servings,	as	recommended	in	the	Dietary Guidelines 
for Americans	(DHHS,	2015),	or	50%	higher	amounts	(4.5	servings/
day).	Whole	 milk,	 Cheddar	 cheese,	 low-	fat	 yogurt,	 and	 ice	 cream	
as	 a	 “dairy	 dessert”	 were	 the	 dairy	 products	 included	 (Table	 1	 in	
Benbrook	et	al.,	2013).

For	 the	 LA	 and	ALA	 contents	 of	 dairy	 fat,	 the	 previous	 study	
used	its	measured	12-	month	average	concentrations	in	conventional	
and	 organic	milks	 (Benbrook	 et	al.,	 2013).	 For	 the	 LA	 and	ALA	 in	
nondairy	 foods,	 the	authors	used	USDA’s	 standard	 reference	data	
for	 8	 common	 foods	 to	 represent	 “typical-	LA	 nondairy	 sources”	
(USDA,	2015).	Those	foods	averaged	23.23	g	LA	and	1.841	g	ALA	
per	 100	kcal	 of	 fat,	 for	 an	 LA/ALA	 ratio	 of	 12.6.	 To	 illustrate	 the	
effects	 of	 reducing	 LA	 intake,	 they	 substituted	 three	 of	 the	 eight	
foods	with	similar,	low-	LA	foods	and	ingredients	(e.g.,	canola	oil	in-
stead	of	 soy	oil,	 the	major	 oil	 used	 in	many	 foods).	 These	 revised	
eight	 “low-	LA	nondairy	 sources”	averaged	13.84	g	LA	and	2.731	g	
ALA	per	100	kcal	of	fat,	with	an	LA/ALA	ratio	of	5.07.

With	 these	 assumptions,	 the	2013	 authors	 calculated	 the	 LA/
ALA	ratios	for	12	diets	with	typical-	LA	nondairy	sources	(3	fat	levels	
×	2	 levels	of	dairy	consumption	×	2	 types	of	dairy	 fat)	 and	 for	an	
additional	12	diets	with	low-	LA	nondairy	sources.	Here,	we	add	to	

these	calculations	a	3rd	type	of	dairy	fat	with	the	average	FA	profile	
found	here	in	1,163	grassmilk	samples.

3  | RESULTS AND DISCUSSION

We	set	out	to	answer	two	key	questions.	First,	to	what	extent	does	
shifting	 lactating	 dairy	 cattle	 to	 nearly	 100%	 forage-	based	 feeds	
alter	 the	 FA	 profile	 of	 their	 milk	 compared	 to	 currently	 available	
conventional	and	organic	milks	in	the	United	States?	The	following	
subsection	presents	results	from	3	years	of	nationwide	sampling,	in-
cluding	seasonal	and	regional	variations.

Our	second	core	question	is	how	much	can	improvements	in	the	
FA	profile	of	grassmilk	help	reverse	historically	high	dietary	ω- 6/ω- 3 
ratios?	We	address	this	question	with	nutrition	modeling	results	in	
the	third	subsection	below.

3.1 | Altering the fatty acid profile of milk

Table	1	shows	concentrations	of	37	main	FAs	 (quantified	amounts	
>0.001	g/100	g	milk)	in	raw,	whole	grassmilk,	averaged	over	3	years	
(2014–2016),	 reported	 as	 g/100	g	 of	milk	 and	 as	 a	 percentage	 of	
total	FAs.	For	each	FA,	there	are	1,163	values,	 less	the	nonquanti-
fied	 samples	 and	 any	 outliers	 removed	 (as	 explained	 in	Methods).	
See	Table	1	footnotes	a	and	b	for	details.	The	coefficients	of	variation	
(CV	=	SD/mean)	are	a	measure	of	variability	among	samples.

Table	S1	shows	the	same	information	for	14	minor	FAs	in	grass-
milk.	 Table	2	 shows	 the	 same	 information	 as	 Table	1	 for	 69	 retail	
samples	 of	 grassmilk	 taken	 during	 2014–2016.	 The	 FA	 profiles	 of	
these	 samples	 of	 processed,	 whole-	fat	 grassmilk	 were	 measured	
to	 determine	 whether	 there	 were	 any	 significant	 changes	 in	 the	
FA	profile	of	grassmilk	as	a	result	of	processing	and	pasteurization.	
For	FA	concentrations	expressed	as	a	percentage	of	total	FAs,	the	
amounts	in	Tables	1	and	2	are	very	similar,	as	expected:	The	means	
in	Table	2	average	101	±	SD	5%	of	the	means	in	Table	1	(for	33	FAs	
with n	>	50%	of	the	analyzed	samples).	However,	for	FA	concentra-
tions	expressed	in	g/100	g	milk,	the	means	in	Table	2	average	only	
75	±	SD	4%	of	the	means	in	Table	1	(for	38	FAs	with	n	>	50%	of	the	
analyzed	samples).	These	values	are	<100%,	mainly	because	 fat	 is	
removed	from	raw	milk	to	produce	retail	whole	milk	with	a	standard-
ized	3.25%	fat	content.

Table	3	compares	selected	FA	levels	and	ratios	in	organic	grass-
milk	 to	 those	 in	 retail	 conventional	 milk	 and	 organic	 milk	 from	
Benbrook	et	al.,	2013.	We	incorporated	in	Table	3	results	from	the	
1,163	samples	of	raw	grassmilk	(Table	1)	rather	than	the	results	from	
69	samples	of	processed	grassmilk	(Table	2).	We	did	so	because	the	
1,163	samples	of	grassmilk	provide	a	more	accurate,	year-	round	FA	
profile	 of	 grassmilk	 than	 the	69	 retail	 samples.	 The	 retail	 conven-
tional	and	organic	milk	 samples	average	~3.1%	total	FAs,	whereas	
the	raw,	grassmilk	samples	average	~3.6%	FAs.	During	the	process-
ing	of	raw	grassmilk,	~0.5%	of	fat	is	removed	to	meet	the	standard	
of	identity	for	fat	in	whole	milk.	Accordingly,	in	Table	3,	we	adjusted	
the	raw	grassmilk	FA	amounts	to	equal	the	average	total	FA	content	
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TABLE  1 Fatty	acids	in	raw,	whole	grassmilk,	36-	month	average,	2014–2016	(1,163	samples)

g/100 g milka Percent of total fatty acidsb

Mean n SD CV (%) SE Mean n SD CV (%) SE

Fat	measured	at	farm 4.237 1162 0.49 12 0.014

Total	triglyceride	
(calculated)

3.881 1161 0.53 14 0.016

Total	fatty	acids 3.585 1161 0.48 13 0.014 99.996 1160 0.15 0.1 0.004

Saturated	fatty	acids

4:0	butyric 0.09202 1163 0.015 17 0.00045 2.572 1163 0.31 12 0.009

6:0	caproic 0.06967 1158 0.013 18 0.00037 1.940 1158 0.21 11 0.006

8:0	caprylic 0.04088 1160 0.009 21 0.00025 1.136 1160 0.16 14 0.005

10:0	capric 0.0963 1163 0.022 23 0.0007 2.671 1163 0.42 16 0.012

12:0	lauric 0.1106 1162 0.027 24 0.0008 3.066 1162 0.50 16 0.015

14:0	myristic 0.3997 1160 0.07 18 0.0021 11.114 1160 1.1 10 0.032

15:0	pentadecanoic 0.05619 1163 0.012 21 0.00034 1.567 1163 0.24 16 0.007

16:0	palmitic 1.116 1162 0.24 21 0.007 31.00 1162 4.3 14 0.13

17:0	margaric 0.0315 1163 0.007 21 0.00019 0.878 1163 0.13 15 0.004

18:0	stearic 0.3738 1163 0.08 22 0.0024 10.455 1163 2.0 19 0.057

20:0	arachidic 0.006756 1149 0.0016 24 0.000047 0.1878 1149 0.035 19 0.0010

22:0 behenic 0.004552 1155 0.0016 34 0.000046 0.1269 1155 0.040 32 0.0012

24:0	lignoceric 0.002443 1153 0.0007 28 0.000020 0.0682 1153 0.015 22 0.0004

Total	saturatedc 2.399 1163 0.39 16 0.011 66.71 1162 4.2 6 0.12

Monounsaturated	fatty	acids

14:1	myristoleic 0.03404 1160 0.0095 28 0.00028 0.944 1160 0.20 22 0.006

16:1	palmitoleic 0.05643 1159 0.014 26 0.00043 1.571 1159 0.33 21 0.010

17:1	margaroleic 0.01052 1157 0.0029 28 0.00009 0.295 1157 0.08 26 0.002

18:1	including	oleic 0.7258 1163 0.12 16 0.0034 20.36 1162 2.8 14 0.08

20:1	including	gadoleic 0.00724 1161 0.0020 28 0.00006 0.2024 1161 0.05 25 0.0015

Total	
cis-	monounsaturatedc

0.8352 1163 0.12 15 0.0036 23.41 1162 2.6 11 0.08

ω-	3	fatty	acids

18:3 α-	linolenic,	ALA 0.04409 1163 0.011 25 0.00032 1.229 1163 0.26 21 0.008

18:4	stearidonic/moroctic 0.002636 841 0.0010 37 0.000034 0.0729 844 0.025 35 0.0009

20:3 
11,14,17-	eicosatrienoic

0.001139 736 0.00036 32 0.000013 0.0306 747 0.009 31 0.0003

20:5	eicosapentaenoic,	
EPA

0.004132 1157 0.0010 23 0.000029 0.1148 1157 0.021 18 0.0006

22:3	docosatrienoic 0.00114 14 0.00036 32 0.00010 0.028 16 0.015 53 0.004

22:5	docosapentaenoic,	
DPA

0.005432 1158 0.0012 23 0.000036 0.1519 1158 0.030 20 0.0009

22:6	docosahexaenoic,	
DHA

0.001064 249 0.0005 50 0.000034 0.0266 258 0.018 67 0.0011

Total	ω- 3d 0.05645 1161 0.013 23 0.00038 1.573 1161 0.30 19 0.009

ω-	6	fatty	acids

18:2	linoleic,	LA 0.04469 1156 0.010 22 0.00029 1.254 1156 0.27 22 0.008

18:3 γ-	linolenic,	GLA 0.001100 649 0.00031 28 0.000012 0.0299 670 0.009 31 0.0004

20:2	eicosadienoic 0.001031 717 0.00017 17 0.000006 0.0258 743 0.007 28 0.0003

(Continues)
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in	 the	 retail	 conventional	 and	organic	milks.	 The	 last	 two	pairs	 of	
columns	show	the	often-	large	percentage	differences	between	con-
ventional	and	adjusted	grassmilk,	and	between	organic	and	adjusted	
grassmilk.

The p-	values	in	Table	3	are	from	two-	tailed	t	tests.	These	are	ac-
curate	 for	 individual	pairwise	comparisons	within	each	of	 the	 two	
pairs	 of	 columns	 considered	 alone,	 but	 they	 somewhat	 overstate	
the	statistical	significance	of	differences	between	pairs	of	columns,	
and	they	do	not	account	for	multiple	comparisons	within	columns.	
However,	these	caveats	are	minor	in	view	of	the	usually	extremely	
small	p-	values	by	t	test.	anova	methods	are	questionable	due	to	the	
unbalanced	 data	 and	 several	 years	 between	measurements.	 Total	
saturated	and	monounsaturated	FA	levels	in	the	adjusted	grassmilk	
show	only	small	percentage	differences	with	 those	 in	 the	conven-
tional	and	organic	milks.	But	 large	percentage	differences	occur	 in	

the	amounts	of	total	ω-	3	and	ω-	6	FAs,	and	total	CLA.	The	mean	level	
of	 total	ω-	3	 in	 the	 adjusted	 grassmilk	 samples	 is	more	 than	 twice	
that	in	the	conventional	samples	(up	147%).	The	shift	from	organic	
management	to	nearly	100%	forage-	based	diets	on	grassmilk	farms	
increases	the	level	of	total	ω-	3	FAs	by	52%.	In	the	case	of	total	ω- 6 
FAs,	 the	 level	 drops	52%	 in	 adjusted	grassmilk	 samples	 compared	
to	 conventional	 samples	 and	 drops	 36%	 from	 organic	 to	 adjusted	
grassmilk.

The	increase	in	ω-	3	FAs	from	conventional	to	adjusted	grassmilk,	
coupled	with	 the	decreases	 in	ω-	6	FAs,	 reduces	 the	ω- 6/ω-	3	 ratio	
from	5.8	in	conventional	milk	to	2.3	in	organic	milk	and	0.95	in	ad-
justed	grassmilk.	Comparable	changes	occur	in	the	LA/ALA	ratio.

Significantly,	 lactating	 cows	 fed	 a	 nearly	 100%	 grass-		 and	
legume-	based	 diet	 produce	milk	with	 substantially	 elevated	 lev-
els	 of	 two	 long-	chain	 ω-	3	 FAs.	 Compared	 to	 conventional	 milk,	

g/100 g milka Percent of total fatty acidsb

Mean n SD CV (%) SE Mean n SD CV (%) SE

20:3 
8,11,14-	eicosatrienoic	(γ)

0.001964 1113 0.0006 32 0.000019 0.0548 1114 0.014 26 0.0004

20:4	arachidonic,	AA 0.003453 1131 0.0015 43 0.000045 0.0920 1132 0.043 46 0.0013

22:2	docosadienoic 0.001803 969 0.0007 39 0.000023 0.0502 975 0.017 33 0.0005

22:4	docosatetraenoic 0.00118 91 0.0005 47 0.00006 0.024 108 0.016 70 0.002

Total	ω- 6d 0.05250 1163 0.012 22 0.00034 1.467 1163 0.31 21 0.009

Total	cis-	polyunsaturatedc 0.10885 1161 0.022 21 0.00066 3.045 1161 0.5 17 0.015

trans	fatty	acids

trans- 14:1 0.01335 1162 0.0029 22 0.00008 0.372 1162 0.07 17 0.002

trans-	16:1,	
trans-	palmitoleic

0.01964 1159 0.0042 21 0.00012 0.551 1159 0.11 20 0.003

trans-	18:1	including	elaidic 0.1381 1160 0.05 39 0.0016 3.885 1160 1.5 39 0.045

trans- 18:2 
octadecadienoic

0.02203 1159 0.008 35 0.00022 0.618 1159 0.21 34 0.006

Total	trans	fatty	acidsc 0.1934 1163 0.06 31 0.0018 5.430 1163 1.7 31 0.049

Conjugated	linoleic	acid,	CLA

18:2	conjugated,	total 0.0498 1163 0.019 38 0.0006 1.403 1163 0.5 38 0.016

Sum

ALA	+	CLA 0.0939 1163 0.022 24 0.0006 2.633 1163 0.6 22 0.017

Ratios

LA/ALA 1.042 1156 0.21 21 0.006 1.042 1156 0.21 21 0.006

ω- 6/ω- 3 0.954 1154 0.18 19 0.005 0.947 1161 0.19 20 0.006

ω- 3/ω- 6 1.083 1154 0.20 18 0.006 1.131 1161 0.6 54 0.018

aFor	FAs	reported	in	units	of	g/100	g	milk,	means	and	the	other	statistics	are	based	on	quantified	amounts	≥	0.001	g/100	g	(samples	<	0.001	g/100	g	
not	 included).	Hence,	for	minor	FAs	with	n	substantially	<1,163,	means	are	elevated,	and	other	statistics	are	based	on	the	distribution	of	samples	
≥0.001	g/100	g.
bFor	units	of	%	of	total	FAs,	means	and	other	statistics	have	the	same	properties	as	noted	above	for	units	of	g/100	g	milk.	For	a	few	minor	FAs,	the	
laboratory	quantified	up	to	26	more	samples	in	units	of	%	of	total	FAs	than	it	did	in	units	of	g/100	g,	increasing	the	n-	values	shown	here.	In	rare	cases,	
the n-	values	differ	also	by	±	1	due	to	differences	in	the	number	of	outliers	removed.
cAn	average	of	sums	reported	by	the	laboratory	for	each	sample.	The	laboratory	sums	include	minor	FAs	reported	in	Table	S1	but	not	tabulated	here,	
so	they	usually	slightly	exceed	the	sum	of	means	for	the	individual	FAs	listed	here.
dAn	average	of	sums	of	all	7	FAs	for	each	sample.	This	average	is	slightly	smaller	than	the	sum	of	means	shown	for	each	FA,	because	some	of	the	latter	
means	are	substantially	elevated	by	exclusion	of	values	<	0.001	mg/100	g	milk	(footnotea).

TABLE  1  (Continued)
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TABLE  2  fatty	acids	in	retail,	whole	grassmilk,	36-	month	average,	2014–2016	(69	samples)

g/100 g milka Percent of total fatty acidsb

Mean n SD CV (%) SE Mean n SD CV (%) SE

Fat	reported	by	processor 3.384 69 0.14 4 0.016

Total	triglyceride	
(calculated)

2.758 69 0.44 16 0.053

Total	fatty	acids 2.616 69 0.42 16 0.050 100.000 69 0.006 0.01 0.0008

Saturated	fatty	acids

4:0	butyric 0.0696 68 0.012 17 0.0014 2.656 68 0.25 9 0.030

6:0	caproic 0.0516 69 0.010 19 0.0012 1.965 69 0.18 9 0.022

8:0	caprylic 0.0306 69 0.006 21 0.0008 1.162 69 0.14 12 0.017

10:0	capric 0.0728 69 0.014 19 0.0017 2.775 69 0.28 10 0.034

12:0	lauric 0.0830 68 0.016 19 0.0019 3.170 68 0.29 9 0.036

14:0	myristic 0.298 68 0.049 17 0.006 11.33 68 0.7 6 0.09

15:0	pentadecanoic 0.0402 68 0.008 20 0.0010 1.538 68 0.18 12 0.022

16:0	palmitic 0.812 69 0.15 18 0.018 31.09 69 3.2 10 0.39

17:0	margaric 0.0225 69 0.0045 20 0.0005 0.858 69 0.09 10 0.011

18:0	stearic 0.276 69 0.06 22 0.007 10.52 69 1.5 14 0.18

20:0	arachidic 0.00496 67 0.0007 15 0.00009 0.1879 67 0.021 11 0.0025

22:0 behenic 0.00338 66 0.0013 37 0.00016 0.126 66 0.042 34 0.005

24:0	lignoceric 0.00191 65 0.0005 24 0.00006 0.0715 65 0.014 20 0.0017

Total	saturatedc 1.758 69 0.29 17 0.035 67.18 69 2.7 4 0.33

Monounsaturated	fatty	acids

14:1	myristoleic 0.0244 68 0.005 21 0.0006 0.935 68 0.13 14 0.016

16:1	palmitoleic 0.0409 69 0.010 24 0.0012 1.560 69 0.26 17 0.031

17:1	margaroleic 0.00765 68 0.0017 23 0.00021 0.289 68 0.045 15 0.005

18:1	including	oleic 0.506 69 0.12 25 0.015 19.40 69 3.6 19 0.43

20:1	including	gadoleic 0.00530 67 0.0013 25 0.00016 0.201 67 0.046 23 0.006

Total	
cis-	monounsaturatedc

0.585 69 0.13 23 0.016 22.41 69 3.6 16 0.43

ω-	3	fatty	acids

18:3 α-	linolenic,	ALA 0.0312 69 0.005 17 0.0006 1.196 69 0.14 12 0.017

18:4	stearidonic/moroctic 0.00206 35 0.0009 46 0.00016 0.076 35 0.030 39 0.005

20:3 
11,14,17-	eicosatrienoic

0.001000 35 0.00000 0 0.000000 0.0297 39 0.009 32 0.0015

20:5	eicosapentaenoic,	
EPA

0.00316 63 0.0006 19 0.00008 0.1208 63 0.020 16 0.0025

22:3	docosatrienoic 0.00100 2 0.040 2

22:5	docosapentaenoic,	
DPA

0.00408 65 0.0009 21 0.00011 0.1551 65 0.024 16 0.0030

22:6	docosahexaenoic,	
DHA

0.00108 12 0.0003 27 0.00008 0.0325 13 0.015 48 0.0043

Total	ω- 3d 0.0397 69 0.007 19 0.0009 1.515 69 0.20 13 0.024

ω-	6	fatty	acids

18:2	linoleic,	LA 0.0332 69 0.007 20 0.0008 1.272 69 0.18 14 0.022

18:3 γ-	linolenic,	GLA 0.001031 32 0.00018 17 0.000031 0.0302 37 0.012 39 0.0020

20:2	eicosadienoic 0.00113 31 0.00034 30 0.00006 0.0332 34 0.018 54 0.0031

(Continues)



8  |     BENBROOK Et al.

adjusted	 grassmilk	 averages	43%	more	20:5	EPA	 and	27%	more	
22:5	DPA,	 two	of	 three	critical	 long-	chain	ω-	3	FAs.	The	percent	
increase	 in	 22:6	 DHA	 cannot	 be	 calculated,	 because	 there	 was	
too	 little	 found	 in	 the	 conventional	 and	 organic	 samples	 tested	
in	 2011–2012.	 We	 estimate	 that	 the	 absolute	 average	 increase	
in	DHA	is	about	0.0006	g/100	g	of	milk	 (Table	3	footnote	 f).	 It	 is	
widely	agreed	that	typical	Western	diets	provide	insufficient	sup-
plies	of	long-	chain	ω-	3	FAs,	 leading	the	European	Food	Standard	
Agency	to	recommend	at	least	a	doubling	of	average	daily	intakes	
of	 long-	chain	 ω-	3	 FAs	 (EPA,	 DPA,	 and	 DHA),	 especially	 during	
pregnancy	(EFSA,	2010).

Limited	data	from	four	small	farms	for	Noble	Milk	in	Italy	show	
shifts	 in	 FA	 profile	 qualitatively	 similar	 to	 those	 in	 grassmilk,	 but	
smaller,	as	expected	given	the	up	to	30%	grain	and	concentrates	al-
lowed	in	cow	rations	(Lombardi	et	al.,	2014).	In	Noble	Milk,	the	ratios	

LA/ALA	and	ω- 6/ω-	3	are	about	30%	to	50%	higher	than	in	grassmilk.	
In	the	summer,	Noble	Milk	reaches	the	annual average	level	in	grass-
milk	for	ω-	3	FAs	and	almost	the	annual	average	for	total	CLA,	but	
both	are	substantially	 lower	 in	other	 seasons.	Total	ω-	6	 is	notably	
low	both	in	Noble	Milk	(about	as	low	as	in	grassmilk)	and	in	Italian	
conventional	milk	 (about	30%	 less	 than	U.S.	 conventional	milk	 re-
ported	by	Benbrook	et	al.,	2013).

3.2 | Trans fatty acid concentrations

Total	 trans	FA	concentrations	 (excluding	CLA)	were	one-	third	higher	
in	 grassmilk	 compared	 to	 the	 similar	 levels	 in	 the	 organic	 and	 con-
ventional	milks	shown	in	Table	3.	Other	studies	have	also	found	that	
pasture	and	forage-	based	feeds	increase	the	levels	of	trans	FA	in	milk,	
mainly	 trans-	18:1,	 simultaneously	with	 increases	 in	CLA,	 a	 group	of	

g/100 g milka Percent of total fatty acidsb

Mean n SD CV (%) SE Mean n SD CV (%) SE

20:3 
8,11,14-	eicosatrienoic	(γ)

0.00159 63 0.0005 33 0.00007 0.0602 63 0.017 29 0.0022

20:4	arachidonic,	AA 0.00245 65 0.0009 36 0.00011 0.0910 65 0.034 38 0.0043

22:2	docosadienoic 0.00141 54 0.0005 35 0.00007 0.0551 54 0.015 28 0.0021

22:4	docosatetraenoic 0.00150 2 0.031 4 0.030 95 0.015

Total	ω- 6d 0.0390 69 0.008 20 0.0009 1.490 69 0.22 14 0.026

Total	cis-	polyunsaturatedc 0.0783 69 0.014 18 0.0017 3.012 69 0.37 12 0.044

trans	fatty	acids

trans- 14:1 0.00975 69 0.0018 19 0.00022 0.3709 69 0.035 9 0.0042

trans-	16:1,	
trans-	palmitoleic

0.01433 69 0.0033 23 0.00039 0.549 69 0.08 14 0.009

trans-	18:1	including	elaidic 0.120 69 0.11 95 0.014 4.53 69 4.0 89 0.48

trans- 18:2 
octadecadienoic

0.0156 68 0.0047 30 0.0006 0.596 68 0.16 26 0.019

Total	trans	fatty	acidsc 0.159 69 0.12 74 0.014 6.05 69 4.1 67 0.49

Conjugated	linoleic	acid,	CLA

18:2	conjugated,	total 0.0353 69 0.010 30 0.0013 1.352 69 0.33 24 0.040

Sum

ALA	+	CLA 0.0665 69 0.014 20 0.0016 2.548 69 0.35 14 0.042

Ratios

LA/ALA 1.069 69 0.15 14 0.018 1.070 69 0.15 14 0.018

ω- 6/ω- 3 0.992 69 0.13 14 0.016 0.991 69 0.13 13 0.016

ω- 3/ω- 6 1.026 69 0.14 14 0.017 1.028 69 0.14 14 0.017

aFor	FAs	reported	in	units	of	g/100	g	milk,	means	and	the	other	statistics	are	based	on	quantified	amounts	≥0.001	g/100	g	(samples	<0.001	g/100	g	
not	 included).	 Hence,	 for	minor	 FAs	with	 n	 substantially	 <69,	means	 are	 elevated,	 and	 other	 statistics	 are	 based	 on	 the	 distribution	 of	 samples	
≥0.001	g/100	g	milk.
bFor	units	of	%	of	total	FAs,	means	and	other	statistics	have	the	same	properties	as	noted	above	for	units	of	g/100	g	milk.	For	a	few	minor	FAs,	the	
laboratory	quantified	up	to	5	more	samples	in	units	of	%	of	total	FAs	than	it	did	in	units	of	g/100	g	milk,	increasing	the	n-	values	shown	here.	In	rare	
cases,	the	n-	values	differ	also	by	±	1	due	to	differences	in	the	number	of	outliers	removed.
cAn	average	of	sums	reported	by	the	laboratory	for	each	sample.	The	laboratory	sums	include	minor	FAs	reported	in	Table	S1	but	not	tabulated	here,	
so	they	usually	slightly	exceed	the	sum	of	means	for	the	individual	FAs	listed	here.
dAn	average	of	sums	of	all	7	FAs	for	each	sample.	This	average	is	slightly	smaller	than	the	sum	of	means	shown	for	each	FA,	because	some	of	the	latter	
means	are	substantially	elevated	by	exclusion	of	values	<0.001	mg/100	g	milk	(footnotea).

TABLE  2  (Continued)
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18:2	isomers,	nearly	all	containing	conjugated	trans	bonds	(Daley	et	al.,	
2010;	 Mansson,	 2008;	 Vargas-	Bello-	Pérezz	 &	 Garnsworthy,	 2013).	
Increases	in	total	CLA	are	associated	with	the	high	ALA	content	of	for-
age	grasses	(Elgersma,	2015),	so	forage	feeding	increases	not	only	CLA	
and	ω-	3	FA	levels	in	milk	(Slots	et	al.,	2009;	Molkentin,	2009,	but	also	
trans	FAs.	Increased	levels	of	CLA	and	ω-	3	FAs	in	milk	have	been	as-
sociated	with	health	benefits	(Larsson,	Bergkvist,	&	Wolk,	2005;	Smit,	
Baylin,	 &	 Campos,	 2010;	 Stender	 &	 Dyerberg,	 2003;	 Vargas-	Bello-	
Pérezz	&	Garnsworthy,	2013).

Trans	FA	has	a	bad	 reputation	because	of	evidence	 that	 sources	
from	 partially	 hydrogenated	 vegetable	 oils	 strongly	 increase	 LDL	
cholesterol,	decrease	HDL	cholesterol,	and	have	multiple	other	met-
abolic	effects	associated	with	CVD.	These	adverse	findings	are	often	
assumed	 to	apply	equally	 to	natural	 sources	of	 trans	 FAs.	However,	
such	 assumptions	 are	 unwarranted,	 because	 there	 are	 large	 differ-
ences between the two sources of trans	FAs.	First,	industrial	sources	
contain	up	to	60%	trans	FAs,	compared	to	a	maximum	of	5	to	8%	of	
FAs	 in	milk	 (5.4%	and	6.0%	 in	Tables	1	and	2)	 (Stender	&	Dyerberg,	
2003).	Second,	the	distribution	of	isomers	differs	greatly	in	the	main	
trans	FA	in	milk,	trans-	18:1	(about	72%	and	75%	of	total	trans	FAs	in	
Tables	1	and	2).	In	industrial	sources,	the	position	of	the	trans	bond	has	
a	broad,	near-	Gaussian	distribution	from	the	6th	to	the	16th	carbon	
atom,	whereas	milk	and	other	ruminant	sources	peak	strongly	at	the	
11th	carbon	atom,	with	only	small	amounts	at	other	positions	(Stender	
&	Dyerberg,	2003).

Trans- 18:1 with the trans	bond	at	the	11th	carbon	atom	is	vacce-
nic	acid	(VA),	the	major	precursor	to	CLA	(rumenic	acid)	in	milk.	At	
the	high	range	of	human	intakes,	VA	has	little	or	no	adverse	effect	
on	risk	factors	for	CVD	(Lacroix	et	al.,	2011).	VA	in	the	cow’s	udder	
is	partially	converted	to	rumenic	acid,	the	major	CLA	in	milk	(75%	to	
90%)	(Lock	&	Bauman,	2004;	Tyburczy	et	al.,	2008).	Humans	are	also	
able	to	convert	some	VA	in	milk	to	this	form	of	CLA	(Lock	&	Bauman,	
2004;	Turpeinen	et	al.,	2002;	Tyburczy	et	al.,	2008).	Despite	having	
a	trans	double	bond,	rumenic	acid	has	proven	benefits	in	animals,	es-
pecially	anticarcinogenic	activity	against	diverse	cancer	types	(Lock	
&	Bauman,	2004).	In	humans,	there	is	suggestive	support	for	activity	
against	colon	cancer	from	a	large,	epidemiological	study	in	Sweden	
(Larsson	 et	al.,	 2005)	 and	 possibly	 against	 breast	 cancer	 (Dilzer	&	
Park,	2012).

For	these	reasons,	the	FDA	exempts	CLAs	from	its	definition	of	
trans	FA	for	purposes	of	food	labeling	(FDA,	2003).	Several	countries	

and	New	York	City	exempt	not	only	CLAs,	but	also	ruminant	trans 
FAs	such	as	VA	(Larsson	et	al.,	2005;	Table	2).

Motard-	Bélanger	 et	al.	 (2008)	 conducted	 a	 double-	blind,	 ran-
domized	crossover	study	of	“high”	and	“moderate”	dietary	 intakes	
of trans	 FAs	 from	 specially	 produced	 milk.	 They	 concluded	 that	
high	 intakes	 of	 these	 trans	 FAs	 “may	 adversely	 affect	 cholesterol	
homeostasis,”	but	 that	moderate	 intakes	 “that	 are	well	 above	 the	
upper	limit	of	current	human	consumption	have	neutral	effects	on	
plasma	lipids	and	other	cardiovascular	risk	factors.”	Their	“moder-
ate”	intake	was	4.2	g/2,500	kcal,	where	4.2	g	is	the	amount	of	total	
trans	 FAs	 in	2.64	kg	of	 retail	 grassmilk	 (Table	2),	 or	10.8	 servings	
of	one	cup	(244	g).	The	“high”	amount	was	10.2	g/2,500	kcal,	2.43	
times	higher	than	the	“moderate”	amount	and	far	beyond	even	ex-
ceptionally	high	levels	of	dairy	product	consumption	in	the	United	
States.

Moreover,	there	is	some	evidence	of	benefits	from	VA	associated	
with	 its	 conversion	 to	CLA	 (Kuhnt,	Degen,	&	 Jahreis,	 2016).	A	 re-
cent	meta-	analysis	included	13	randomized,	controlled	intervention	
trials	 that	 used	 dairy	 products	 as	 the	 primary	 source	 of	 trans	 FA,	
in	amounts	as	high	as	4.2%	of	energy	 (10.9	g	 trans	 FA/2,500	kcal)	
(Gayet-	Boyer,	Tenenhaus-	Aziza,	Prunet,	&	Chardigny,	2014).	The	au-
thors	found	that	these	levels	of	trans	FA	have	no	harmful	effects	on	
HDL	cholesterol,	LDL	cholesterol,	or	their	ratio.

Hence,	there	is	a	clear	need	to	distinguish	between	natural	and	
industrial	sources	of	trans	FA,	but	this	will	take	time	and	careful	re-
porting,	because	of	long-	standing	assumptions	to	the	contrary.

3.3 | Regional and seasonal differences

Our	 large,	 nationwide,	 3-	year	 dataset	 allows	 assessment	 of	 the	
regional	 and	 seasonal	 consistency	 in	 the	 impact	 of	 nearly	 100%	
forage-	based	 feed	on	 the	FA	profile	of	 grassmilk.	Table	4	 shows	
modest,	 but	 sometimes	 statistically	 significant,	 regional	 differ-
ences	in	grassmilk	composition	for	total	ω-	6	and	ω-	3	FA.	The	high-
est	average	levels	of	ω-	3	FAs	in	grassmilk	came	from	the	Midwest	
and	 Northeast	 (1.60%	 and	 1.58%	 of	 total	 FA),	 while	 California	
had	 the	 lowest	 (1.40%),	 about	 a	 14%	 difference.	 Likewise,	 the	
Midwest	and	Northeast	had	the	two	highest	average	concentra-
tions	 of	 total	 ω-	6	 FAs.	 For	 total	 CLA,	 there	 are	 no	 statistically	
significant	regional	differences.	Average	ratios	of	LA/ALA	and	ω- 
6/ω-	3	 varied	 by	 7%	 across	 the	 4	 regions,	 but	 these	 differences	

California Mideast Midwest Northeast SEM p- value

Observations 85 54 582 442

Total	ω- 3 1.40c 1.434bc 1.601a 1.575ab 0.04 .002

Total	ω- 6 1.364ab 1.309b 1.477a 1.495a 0.04 .002

Total	CLA 1.282 1.165 1.300 1.379 0.07 .09

LA/ALA 1.091 1.022 1.035 1.047 0.03 .62

ω- 6/ω- 3 1.189 1.232 1.206 1.151 0.07 .75

*Least	 square	means.	Means	within	 a	 row	without	 common	 superscripts	 are	different	 at	p < .05. 
Means	were	evaluated	using	Tukey’s	multiple	comparisons	test.

TABLE  4 Regional	variation	in	selected	
grassmilk	fatty	acids,	2014–2016	(%	of	
total	FA)*
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are	 not	 statistically	 significant	 (p > .05).	 There	 were	 no	 regional	
differences	for	the	major	FAs	in	milk—total	saturated	and	total	cis-	
monounsaturated	FAs	(not	shown).

Some	regional	and	seasonal	variation	in	the	FA	profile	of	grass-
milk	is	expected,	driven	by	differences	in	the	quality	and	in	botanical	
composition	of	 fresh	and	stored	 forage	 (Ravetto	Enri	et	al.,	2017).	
Such	variations	are	often	 triggered	by	 climatic	 conditions	 that	 are	
most	 extreme	 during	 extended	 drought	 or	 heavy	 rains	 leading	 to	
water-	logged	 soils	 or	 flooding.	 The	 length	 of	 the	 outdoor	 grazing	
period	also	 impacts	 forage	quality,	 as	does	management	attention	
to	sustaining	a	proper	mix	of	grass	and	legume	species	in	pastures	
(so	that	high-	quality,	immature	forages	are	present	in	pastures	from	
spring	 through	 the	 fall).	 The	 timing	 of	 forage	 harvests	 and	 how,	
and	 how	well,	 forage-	based	 feeds	 are	 conserved	 also	 impact	 for-
age	 composition.	 Despite	 all	 these	 factors,	 our	 results	 show	 that	
CROPP	farmers	switching	to	grassmilk	standards	have	consistently	

improved	milk	FA	composition	over	 the	broad	range	of	agronomic	
and	pedo-	climatic	conditions	found	in	the	United	States.

Table	5	reports	small	but	sometimes	statistically	significant	dif-
ferences	between	years.	The	average	ω- 6/ω-	3	 ratio	declined	each	
year	from	2014	to	2016,	for	an	overall	decline	of	6%	(p < .05).	This	
decline	results	from	a	3.2%	decline	in	total	ω-	6	FAs	and	a	1.5%	in-
crease	in	total	ω-	3	FAs	(p > .05	for	both).	Many	factors	might	contrib-
ute	to	these	changes	over	3	years,	including	improving	management,	
changing	climate	or	pasture	conditions,	or	the	increasing	numbers	of	
participating	farms.

Seasonal	highs	and	lows	in	grassmilk	FAs	are	shown	in	Table	6,	
averaged	 over	 all	 1,163	 samples	 (2014–2016).	 The	 ω- 6/ω-	3	 ratio	
peaked	in	July	and	bottomed	in	December,	with	a	variation	of	30%	
from	low	to	high.	For	ω-	6	and	ω-	3	levels,	the	maximum	variation	was	
somewhat	less,	21%	to	22%.	The	largest	seasonal	variation	occurred	
in	total	CLA	concentration,	which	more	than	doubled	in	September	
compared	to	April.	Saturated	and	monounsaturated	FA	levels	did	not	
vary	significantly	by	month	(not	shown).

Figure	1	 shows	 the	monthly	 variation	 in	 average	ω- 6/ω-	3	 ratio	
in	all	geographical	regions	during	2014–2016.	Figure	S1	shows	sim-
ilar	plots	for	the	three	separate	geographical	regions	with	the	most	
samples	 (sample	 numbers	 are	 85	 for	 California,	 582	 for	Midwest,	
and	442	 for	Northeast).	The	California	 region	shows	notably	 little	
monthly	variation	in	ω- 6/ω- 3.

For	 Noble	 Milk,	 reported	 seasonal	 variations	 from	 four	 small	
farms	in	Italy	are	considerably	larger	than	in	grassmilk	for	total	ω- 3 
FAs	(twofold	larger)	and	total	CLA	(nearly	threefold	larger).	However,	
seasonal	 variations	 in	 LA/ALA	 and	ω- 6/ω-	3	 are	modest	 (Lombardi	
et	al.,	2014).

TABLE  5 Yearly	variation	in	selected	grassmilk	fatty	acids	
(g/100	g	milk)*

2014 2015 2016

Observations 364 370 429

Total	ω- 3 0.0519b 0.0558a 0.0527b

Total	ω- 6 0.0493b 0.0538a 0.0477b

Total	CLA 0.0454 0.0444 0.0453

LA/ALA 1.0583 1.0566 1.0284

ω- 6/ω- 3 0.9888a 0.9720a 0.9276b

*Least	square	means.	Means	within	a	row	without	common	superscripts	
are	different	at	p < .05.

High Month Low Month High/Low

ω- 3 0.0594 December 0.0486 August 1.22

ω- 6 0.0548 October 0.045 February 1.21

CLA 0.0635 September 0.0310 April 2.05

ω- 6/ω- 3 1.093 July 0.838 December 1.30

aLeast	square	means	in	region-	and-	year	mixed	model.

TABLE  6 Seasonal	variations	of	key	
fatty	acids,	2014–2016	means	(g/100	g	
grassmilk)a

F IGURE  1 Monthly	variation	in	
mean	ω- 6/ω-	3	ratio	over	all	geographical	
regions,	2014–2016	(429	samples).	The	
vertical	bars	show	SEs	from	the	least	
squares	analysis
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3.4 | Relationship between dairy rations and milk 
FA profile

All	commercial	dairy	breeds	descended	from	grazing	herbivores.	The	
more	 their	diet	 strays	 from	 leafy	vegetation,	 the	greater	 the	chal-
lenge	to	maintain	gut	health.	The	well-	known	effects	of	grain	feed-
ing	on	milk	FAs	are	caused	by	alterations	in	the	normal	functions	of	
the	cow	rumen	and	its	microbes	(McDonald	et	al.,	2006).

Combining	the	results	of	this	study	of	CROPP	grassmilk	with	our	
prior	study	of	conventional	milk	and	CROPP	organic	milk	(Benbrook	
et	al.,	 2013),	 we	 can	 estimate	 quantitative	 relationships	 between	
various	 levels	of	grain	 feeding	of	dairy	cows	and	 the	FA	composi-
tion	of	their	milk.	Table	7	shows	these	relationships	for	the	ω- 6/ω- 3 
ratio	and	the	content	of	total	CLA.	In	addition	to	Grassmilk,	Organic	
milk,	and	Conventional	milk,	we	include	an	estimate	for	“Minimum	
Forages”	milk	from	cows	with	no	grazing	and	maximum	amounts	of	
grain.	Most	dairy	cows	in	the	United	States	now	receive	a	very	small	
share,	or	none	of	their	annual	DMI	from	grazing	(0	to	3%).	We	esti-
mate	that	cows	under	“Minimum	Forages”	management	get	approxi-
mately	60%	of	DMI	from	corn	silage	and	concentrate	feeds,	and	40%	
from	dry	or	 fermented	alfalfa	hay	 in	a	“total	mixed	ration”	 (mostly	
chopped,	dry	alfalfa	hay).	More	commonly	in	the	United	States,	cows	
under	Conventional	management	 receive	somewhat	 less	corn	plus	
concentrate	feeds	 (47%)	and	somewhat	more	stored	forage	 (50%),	
with	about	3%	of	annual	DMI	from	grazing	(total	forages,	53%).

According	to	CROPP	records,	cows	under	Organic	management	
on	 its	 farms	 receive	 about	 56%	of	 daily	DMI	 from	pasture	 during	
an	 average	 183-	day	 season	 and	 hence	 about	 28%	of	 their	 annual	
DMI	 from	grazing.	On	CROPP	farms	producing	Grassmilk,	pasture	
accounts	for	an	average	80%	of	DMI	over	a	190-	day	grazing	season,	
or	42%	of	annual	DMI.	Stored,	forage-	based	feeds	add	nearly	52%	of	
daily	DMI	on	Organic	farms,	and	58%	on	Grassmilk	farms,	bringing	
their	totals	from	forage-	based	feeds	to,	respectively,	about	80%	and	
nearly	100%	of	DMI.

In	 the	 milk	 from	 these	 four	 management	 systems,	 the	 ratios	
of ω- 6/ω-	3	decline	 from	an	estimated	8	with	Minimum	Forages	 to	
measured	 values	 of	 5.8	 in	Conventional	milk,	 2.3	 in	Organic	milk,	
and	0.95	in	Grassmilk	(Table	7).	Simultaneously,	the	annual	average	

amounts	 of	 total	 CLA	 in	 conventional	 to	 retail	 grassmilk	 increase	
about	 fourfold	 from	 about	 0.010	 to	 0.043	g/100	g	milk.	 For	 total	
CLA,	the	impact	of	pasture	and	forage	feeding	appears	to	increase	
as	their	proportion	of	annual	DMI	increases	beyond	80%,	an	obser-
vation	that	deserves	further	exploration.

In	grain	crops,	 stage	of	growth	 impacts	 the	FA	composition	of	
feedstuffs	 in	 cow	 rations,	 as	well	 as	 the	FA	profile	of	milk	 (Darby	
et	al.,	2012;	Darby	et	al.,	2013;	Duvick	et	al.,	2006).	Supplemental	
Text	S1	and	Table	S2	compare	the	FAs	in	common	forage	grass	and	
legume	crops	with	those	of	several	cereal	crops	at	various	stages	of	
maturity.

3.5 | Nutrition modeling of grass milk effects on 
dietary LA/ALA ratios

Tables	1–3	 show	 that	 increasing	 forage-	based	 feeds	 in	 rations	 for	
lactating	cows	can	significantly	alter	the	FA	profile	of	milk;	however,	
a	 key	 question	 remains.	Will	 consumption	 of	 dairy	 products	 from	
cows	fed	all,	or	mostly,	forage-	based	feeds	have	a	meaningful	impact	
on	human	intakes	of	FAs,	and	potentially	on	public	health?

To	address	this	question,	we	modeled	total	LA	and	ALA	intakes	
in	 the	daily	diet	of	a	moderately	active	19-		 to	30-	year-	old	women	
across	36	diet	scenarios—18	diets	with	typical,	high-	LA	foods	such	as	
regular	margarine	and	other	foods	containing	soy	oil,	and	18	mostly	
identical	diets	in	which	three	foods	lower	in	LA	content	were	substi-
tuted	(e.g.,	pita	chips	instead	of	corn	chips,	and	margarine	made	with	
canola	oil	instead	of	soy	oil).

The	18	scenarios	in	each	of	these	two	cases	(high-		and	low-	LA	
intakes)	entailed	 three	 levels	of	 fat	 intake	 (20%,	33%,	and	45%	of	
total	 energy),	 two	 levels	 of	 dairy	 product	 consumption	 (3	 and	4.5	
servings/day),	and	three	variations	of	dairy	fat	(from	cows	managed	
under	 the	 conventional,	 organic,	 and	 grassmilk	 systems	 discussed	
here,	with	their	varying	reliance	on	grazing	and	forage	rations	shown	
in	Table	7).

Our	modeling	 focuses	on	 total	 intakes	of	LA	and	ALA	and	 the	
LA/ALA	ratio	(rather	than	ω-	6,	ω-	3,	and	ω- 6/ω-	3),	because	the	USDA	
does	not	publish	sufficient	and	reliable	data	on	the	total	ω-	6	and	ω- 3 
contents	of	many	common	foods.	But	for	many	foods,	it	does	report	

TABLE  7 Estimated	average	daily	dry	matter	intake	from	grazing,	forage,	and	grain	under	four	management	systems:	impacts	on	ω- 6/ω- 3 
and	total	CLA	in	retail	whole	milk

Management system

Average daily dry matter intake (DMI) Milk fatty acids

In season Annual basis

ω- 6/ω- 3 CLA (g/100 g)Grazing (%) Grazing (%)
Stored 
forages (%)

Grazing plus 
forages (%)

Grains and 
concentrates (%)

Minimum	forages 0 0 40 40 60 8.0 0.010

Conventional 6 3 50 53 47 5.8a 0.019a

Organicb 56 28 52 80 20 2.3a 0.023a

Grassmilkb 80 42 58 100 0 0.95 0.043

aBenbrook	et	al.	(2013).
bEstimated	from	annual	pasture	and	lactating	cattle	feed	surveys	by	CROPP	cooperative.
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reliable	 (fully	differentiated)	contents	of	LA	and	ALA.	LA	and	ALA	
are,	respectively,	by	far	the	major	dietary	ω-	6	and	ω-	3	FAs	in	nearly	
all	foods,	so	dietary	ratios	of	LA/ALA	are	a	reliable	proxy	for	dietary	
ω- 6/ω-	3	ratios.

We	assess	the	degree	to	which	each	of	the	36	dietary	scenarios	
reduces	the	LA/ALA	from	the	baseline	level	of	11.3	for	3	servings/
day	 of	 conventional	 milk,	 typical-	LA	 sources	 of	 nondairy	 fat,	 and	
33%	of	energy	from	fat.	The	lower	the	ratio,	the	greater	the	body’s	
ability	to	convert	dietary	ALA	to	the	essential,	longer-	chain	ω-	3	FAs.	
This	conversion	is	most	important	for	pregnant	and	lactating	women	
and	 for	 those	 who	 consume	 little	 or	 no	 oily	 fish	 (Brenna,	 2002;	
Burdge	&	Calder,	2005).	Oily	fish	are,	per	serving,	superior	sources	
for	 EPA	 and	DHA,	 but	 even	 oily	 fish	 do	 not	 contain	 enough	ALA	
to	significantly	alter	dietary	ratios	of	LA/ALA	or	ω- 6/ω-	3	(Benbrook	
et	al.,	2013;	USDA,	2015).

Table	8	gives	sample	 results	 from	our	nutrition	modeling	cal-
culations	for	four	diets	with	typical	intakes	of	total	fat	(33%	of	en-
ergy)	and	dairy	fat	with	the	FA	profile	of	adjusted	grassmilk.	These	
four	 diets	 include	 those	 with	 moderate	 (recommended)	 (DHHS,	
2015)	dairy	intake	(3	servings/day)	and	high	dairy	intake	(4.5	serv-
ings/day),	 with	 either	 typical-	LA	 or	 low-	LA	 sources	 of	 nondairy	
fat.	For	these	four	diets,	the	table	shows	the	dairy	and	nondairy	
contributions	to	dietary	intakes	of	LA	and	ALA,	the	LA/ALA	ratio	
and	changes	in	this	ratio	relative	to	the	baseline	ratio	of	11.33	for	
recommended	 intakes	of	conventional	dairy	products	 (Benbrook	
et	al.,	2013).	Thus,	it	shows	the	impact	on	dietary	LA/ALA	ratios	of	
switching	from	conventional	to	grassmilk	dairy	products	for	these	
four	 diets.	We	 performed	 similar	 calculations	 for	 corresponding	
diets	with	low	and	high	amounts	of	total	dietary	fat	(20%	and	45%	
of	energy).

For	a	diet	with	typical	total	dietary	fat	(33%	of	energy),	moder-
ate	dairy	 servings,	and	 typical-	LA	sources	of	nondairy	 fat,	Table	8	

shows	that	a	switch	from	conventional	 to	adjusted	grassmilk	dairy	
products	would	decrease	the	overall	dietary	LA/ALA	ratio	by	2.68	
to	8.64	 from	the	baseline	 ratio	of	11.33.	Adding	1.5	servings/day,	
for	a	total	of	4.5	servings/day	of	dairy	products,	would	further	lower	
the	LA/ALA	ratio	to	5.95—a	total	drop	of	5.37.	These	are	substantial	
decreases.	For	corresponding	diets	with	low-	LA	sources	of	nondairy	
fat,	the	reductions	in	LA/ALA	ratio	are	even	larger,	by	7.31	and	8.19,	
respectively,	for	moderate	and	high	consumption	of	dairy	products.

As	we	discuss	below,	reductions	in	dietary	LA/ALA	ratios	of	this	
magnitude	seem	of	potential	public	health	significance.	Much	of	the	
reductions	 can	 be	 achieved	 with	 grassmilk	 dairy	 products	 alone,	
without	reducing	intakes	of	nondairy	LA.	The	opportunity	to	reduce	
total	dietary	LA/ALA	ratios	from	11.33	to	as	low	as	3.14,	and	without	
major	changes	in	dietary	patterns,	seems	notable	to	us.	In	our	model	
diets,	 there	 are	 no	 changes	 in	most	 foods,	 including	 French	 fries,	
chocolate	chip	cookies,	chicken,	pork,	and	beef.	The	modeled	food	
choices	represent	an	attainable	option	to	improve	FA	intakes	in	ways	
that	will	likely	reduce	the	risk	for	cardiovascular	and	other	metabolic	
disorders,	at	least	for	some	individuals.	Many	other	factors—genet-
ics,	 age,	 health	 status,	 and	 environmental	 exposures—will	 interact	
in	determining	the	magnitude	of	such	impacts	(Simopoulos,	2006).

Figure	2	shows	the	full	results	of	our	nutrition	modeling,	includ-
ing	diets	with	low	and	high	intakes	of	total	dietary	fat	(20%	and	45%	
of	energy).	For	diets	with	typical-	LA	nondairy	fat	sources	(left	side	
of	Figure	2),	the	decreases	in	dietary	LA/ALA	ratios	are	enhanced	in	
the	diets	with	only	20%	of	energy	from	fat	and	attenuated	in	high-	
fat	diets.	For	diets	with	 low-	LA	nondairy	 fat	sources	 (right	side	of	
Figure	2),	 there	 is	 little	dependence	on	 the	overall	 level	of	dietary	
fat,	 but	 the	 reductions	 in	 dietary	 LA/ALA	 ratio	 are	 much	 larger,	
including	 even	with	 conventional	 dairy	 fat.	Organic	 and	 grassmilk	
dairy	fat	have	the	most	impact	on	diets	with	typical-	LA	nondairy	fat,	
compared	to	diets	with	low-	LA	nondairy	fat.

TABLE  8 LA	and	ALA	contributions	to	average-	fat	diets	with	grassmilk	dairy	fat	and	typical-	LA	and	Low-	LA	nondairy	fat	sourcesa

LA from dairy 
fat (g)b

ALA from dairy 
fat (g)b

LA from other 
fat (g)c

ALA from other 
fat (g)c Total LA (g) Total ALA (g)

Total LA/
Total ALA 
ratio

Typical-	LA	nondairy	fat	sources

Moderate	
dairy	intake

0.41 0.41 9.91 0.79 10.32 1.19 8.64

High	dairy	
intake

0.62 0.62 5.77 0.46 6.39 1.07 5.95

Low-	LA	nondairy	fat	sources

Moderate	
dairy	intake

0.41 0.41 5.90 1.17 6.32 1.57 4.01

High	dairy	
intake

0.62 0.62 3.44 0.68 4.06 1.29 3.14

aThis	table	extends	Table	3	in	Benbrook	et	al.,	2013	to	include	grassmilk.	The	modeled	dairy	servings	are	in	Table	1	of	that	paper.	In	it,	the	baseline	LA/
ALA	ratio	is	11.33,	for	moderate	consumption	of	conventional	dairy	fat.
bBased	on	LA,	ALA,	and	total	FA	from	Table	1,	8.79	kcal/g	dairy	fat,	and	0.933	g	milk	FA/g	dairy	fat.	For	example,	LA	0.41	=	313	kcal	(2013	Table	1)/8.
79	×	0.0447/3.585	×	0.933.
cBased	 on	 23.23	g	 LA	 and	 1.841	g	 ALA	 per	 100	kcal	 nondairy	 fat	 and	 8.90	kcal/g	 nondairy	 fat	 For	 example,	 LA	 9.91	=	380	kcal	 (2013	
Table	1)/8.90	×	23.23/100.	Corresponding	calculations	for	low-	LA	nondairy	fat	use	13.84	g	LA	and	2.731	g	ALA	per	100	kcal	nondairy	fat.
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For	typical	diets	with	33%	of	energy	from	fat	and	typical-	LA	non-
dairy	fat	(left	side	of	Figure	2),	switching	from	moderate	amounts	of	
conventional	 to	high	amounts	of	grassmilk	dairy	products	 reduces	
the	LA/ALA	 ratio	 from	11.33	 to	5.95,	 a	47%	 reduction.	The	 same	
switch	 for	 diets	 with	 low-	LA	 nondairy	 fat	 decreases	 the	 LA/ALA	
ratio	from	5.11	to	3.14.

LA	and	ALA	are	essential	human	nutrients,	but	they	both	comple-
ment	and	compete	with	each	other,	and	their	dietary	ratio	matters.	
They	are	elongated	by	parallel	and	competing	pathways	to,	respec-
tively,	AA	(from	LA)	and	EPA	(from	ALA),	which	in	turn	are	converted	
into	 eicosanoids	 that	 regulate	 many	 body	 functions.	 Eicosanoids	
derived	from	AA	are	proinflammatory	and	thrombogenic,	and	sev-
eral	have	been	linked	to	carcinogenesis,	whereas	those	derived	from	
ALA	tend	to	suppress	inflammation,	thrombosis,	and	carcinogenesis,	
especially	when	 the	ω- 6/ω-	3	 ratio	 approaches	 1	 (Larsson,	Kumlin,	
Ingelman-	Sundberg,	&	Wolk,	2004).

Thus,	a	large	excess	of	dietary	LA	compared	to	ALA	can	increase	
the	risk	of	CVD,	cancer,	and	other	diseases	(Burdge	&	Calder,	2005;	
Ramsden,	 Hibbeln,	 Majchrzak,	 &	 Davis,	 2010;	 Siri-	Tarino,	 Chiu,	
Bergeron,	&	Krauss,	2015).	For	some,	and	perhaps	most	people	 in	
the	United	States,	high-	LA	intakes	reduce	the	quantity	of	ALA	con-
verted	to	EPA	and	its	related	eicosanoids	and	also	reduce	the	con-
version	of	ALA	to	DHA.

DHA	is	independently	important,	because	it	is	required	in	the	de-
velopment	of	the	infant	brain	and	ocular	system	(Ailhaud,	Massiera,	
Alessandri,	 &	 Guesnet,	 2007;	 Donahue	 et	al.,	 2011),	 as	 discussed	
further	below.

Impaired	conversion	of	ALA	to	EPA	and	DHA	is	of	considerable	
concern	in	the	United	States,	because	most	Americans	do	not	con-
sume	 adequate	 fish	 to	meet	 the	 recommended	 average	 intake	 of	
250	mg/day	of	EPA	+	DHA	(DHHS,	2015;	EPA,	2002).	Hence,	they	
must	partly	rely	on	dietary	intake	of	EPA	and	DHA	from	meat	and	
dairy	products	or	supplements.	Indeed,	in	the	late	1990s,	over	70%	
of	Americans	age	18	or	older	consumed	no	fish	and	shellfish	(EPA,	
2002).

3.6 | Contribution of grass milk dairy products and 
fish to fatty acid intakes

Oily	fish	are	the	ultimate,	direct	source	of	the	long-	chain	ω-	3	PUFAs,	
EPA,	DPA,	and	DHA.	DHA	is	present	at	very	low	concentrations	in	
other	foods,	including	grass	milk,	but	it	plays	a	vital	role	in	the	de-
velopment	 of	 an	 infant’s	 and	 child’s	 brain,	 eyes,	 and	 nervous	 sys-
tem	(Bondi	et	al.,	2013;	Moon	et	al.,	2013;	Ryan	et	al.,	2010).	For	the	
70%	of	Americans	who	consume	essentially	no	fish,	the	efficiency	
of	conversion	of	ALA	to	 long-	chain	ω-	3	FAs	 is	critically	 important,	
especially	 for	 those	with	 elevated	 need,	 such	 as	 growing	 children	
and	women	who	are	pregnant	or	breastfeeding.	For	this	conversion,	
ALA	from	dairy	products	and	other	foods	plays	dual	roles.	First	as	a	
precursor	to	EPA,	DPA,	and	DHA,	and	second	by	decreasing	the	LA/
ALA	ratio,	and	hence	the	tendency	of	LA	to	capture	and	utilize	the	
enzymes	needed	to	convert	ALA	to	long-	chain	ω-	3	FAs.

Although	 high	 in	 long-	chain	 ω-	3	 FAs,	 oily	 fish	 do	 not	 contain	
significant	 amounts	 of	 either	 LA	or	ALA,	 and	 for	 this	 reason,	 fish	

F IGURE  2 Decreases	in	dietary	LA/ALA	ratios	for	an	adult	woman	consuming	two	levels	of	conventional,	organic,	and	grassmilk	dairy	
products	and	two	types	of	nondairy	fat.	The	diets	contain	moderate	“Mod.”(3	servings/day)	or	“High”	(4.5	servings/day)	amounts	of	dairy	
products	made	from	conventional	(“Conv.”),	“Organic,”	or	“Grassmilk,”	in	the	contexts	of	total	fat	contributing	20%,	33%,	or	45%	of	energy,	
and	nondairy	fat	containing	typical	amounts	of	LA	(left	side)	or	low	amounts	of	LA	(right	side)
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consumption	does	not	significantly	 impact	overall	dietary	ratios	of	
LA/ALA	or	ω- 6/ω-	3.	Benbrook	et	al.	(2013)	used	USDA	data	on	the	
FA	contents	of	seven	commonly	consumed	fish	species	(canned	tuna,	
tilapia,	halibut,	sockeye	salmon,	catfish,	trout,	and	Atlantic	salmon)	
to	calculate	 the	amounts	of	LA,	ALA,	EPA,	DPA,	and	DHA	from	8	
ounces	of	 fish	per	week,	 the	amount	 recommended	 in	 the	Dietary 
Guidelines for Americans	 (DHHS,	2015).	This	weekly	amount	of	the	
7	fish	species	supplies	between	1	(canned	light	tuna)	to	58	mg/day	
(Atlantic	salmon)	of	ALA,	with	an	average	of	20	mg/day	(Table	4	in	
Benbrook	et	al.,	2013).	This	daily	amount	of	ALA	is	small	compared	
to	the	137	mg	in	1.5	cups	of	grassmilk,	or	the	162	mg	in	a	1.5-	ounce	
serving	of	cheddar	cheese	made	from	grassmilk	(see	below).

Table	9	shows	the	amounts	of	key	FA	from	grassmilk	dairy	prod-
ucts	in	our	dietary	modeling.	These	amounts	complement	the	data	pre-
sented	in	Table	3	of	Benbrook	et	al.	(2013)	for	conventional	and	organic	
dairy	products.	Table	9	also	shows	the	FA	content	of	the	7	commonly	
consumed	fish	mentioned	above.	In	addition	to	these	recommended	
amounts	of	dairy	and	 fish	 (DHHS,	2015),	Table	9	also	shows	the	FA	
content	of	 the	 lower,	 actual	 per-	capita	 consumptions	of	dairy	prod-
ucts	(270	g/day)	and	fish	(9.1	g/day).	Actual,	average	per-	capita	intakes	
are	28%	of	recommended	for	fish	and	42%	of	recommended	for	dairy	
products	(Lin,	Variyam,	Allshouse,	&	Cromartie,	2003).

Based	on	average	per-	capita	consumption	of	dairy	products	and	
fish,	grassmilk	dairy	products	would	supply	31	times	more	ALA	than	
fish,	4.5	times	more	LA,	37%	as	much	EPA,	1.2	times	more	DPA,	but	
only	about	3%	of	the	DHA.	Grassmilk	dairy	products	supply	29%	as	
much	total	 long-	chain	FA	(EPA	+	DPA	+	DHA)	as	fish,	with	a	much	
lower	overall	LA/ALA	ratio	(0.95	versus	6.5).

4  | CONCLUSIONS

We	find	that	nearly	100%	grass-		and	legume-	based	feeding	of	lac-
tating	dairy	cows	typically	yields	milk	fat	with	ratios	of	LA/ALA	and	
ω- 6/ω-	3	close	to	1,	compared	to	5.8	for	milk	from	cows	on	conven-
tionally	managed	 farms,	 and	 2.3	 for	 typical	 (but	 not	 nearly	 100%	
grass-	fed)	organic	dairy	farms.	Our	dietary	modeling	scenarios	show	
that	 replacing	 recommended	 daily	 servings	 of	 conventional	 dairy	
products	with	grassmilk	products	and	avoiding	some	foods	high	in	
LA	 could	 substantially	 decrease	 historically	 high	 dietary	 ratios	 of	
LA/ALA	(and	thus	ω- 6/ω-	3	ratios)	from	current	values	of	>10	to	as	
low	as	3.1.	 Such	decreases	have	 several	 potential	 health	benefits,	
including	 an	 enhanced	 ability	 to	 convert	 dietary	ALA	 to	 the	 long-	
chain	ω-	3	FAs	EPA,	DPA,	and	DHA.	These	nutrients	are	typically	not	
consumed	at	recommended	levels	(DHHS,	2015),	and	are	especially	
needed	during	pregnancy	and	lactation,	by	children,	and	by	the	ma-
jority	of	Americans	who	eat	little	or	no	fish.

Because	of	the	widely	varying	FA	profile	of	dairy	products	de-
pending	 on	 production	 systems,	 coupled	 with	 large	 variations	 in	
their	 fat	content	 (whole,	 reduced	fat,	and	fat	 free),	 the	widely	dis-
seminated	promotional	claim	“milk	is	milk”	(Dairy	Reporter,	2003)	is	
hard	to	square	with	the	nature	of	dairy	products	currently	sold	and	
consumed	in	the	United	States	and	elsewhere.

Shifting	 lactating	 dairy	 cows	 to	 rations	 containing	 substantial	
portions	of	forage-	based	feeds	and	less	grain	dramatically	decreases	
the	amounts	of	LA	in	milk,	while	also	elevating	levels	of	ALA,	long-	
chain	ω-	3	FAs,	and	total	CLA.	These	attainable	shifts	in	the	FA	pro-
file	of	milk	and	dairy	products	are	one	of	several	practical	ways	to	
potentially	improve	the	quality	of	American	diets.	The	shifts	can	be	
accomplished	with	 existing	 dairy	 industry	 infrastructure	 and	with	
likely	modest	impact	on	food	expenditures	after	a	transition	period.

Improved	messages	from	government	dietary	recommendations	
(Nissen,	2016)	and	food	labeling	reforms	should,	over	time,	increase	
consumer	demand	for	grass-	fed	beef,	milk,	and	other	livestock	prod-
ucts.	Differentiating	more	clearly	between	the	FAs	implicated	or	not	
implicated	in	the	risks	for	obesity,	CVD,	and	metabolic	syndrome	will	
be	an	additional	important	step	forward.

Further	research	is	needed	to	determine	realistically	attainable	
shifts	 in	FA	 consumption	 in	 the	wide	diversity	of	 diets	 across	 the	
U.S.	population	and	to	assess	the	cost	of	alternative	paths	toward	
healthier	fat	intakes.	Likewise,	further	research	is	needed	to	identify	
profitable	 and	 scalable	 changes	 in	 livestock	 feed	 rations	and	 food	
manufacturing	that	will	lower	dietary	ω- 6/ω-	3	ratios	and	increase	in-
takes	of	long-	chain	ω-	3	FAs	and	CLA.	Improved	understanding	of	the	
relationship	between	fat	quality	and	health	outcomes	will	help	guide	
livestock	and	dairy	farmers,	the	food	industry,	government	agencies,	
scientists,	and	physicians	searching	for	promising	ways	to	promote	
public	health.
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APPENDIX 
Grass milk standards and oversight
In	2016,	a	coalition	of	dairy	 industry	and	certification	organiza-

tions	defined	a	broad	national	standard	for	“100%	Grass-	fed	dairy”	
(AGA,	 2016).	 These	 organizations	 included	 Pennsylvania	 Certified	
Organic,	 American	 Grassfed	 Association,	 Northeast	 Organic	
Farming	Association	[New	York	(NOFA-	NY,	2016)	&	Vermont	chap-
ters],	Maple	Hill	Creamery,	and	CROPP	Cooperative.	That	coalition	
adopted	 CROPP’s	 Grassmilk	 standards	 as	 part	 of	 its	 consensus	
standard.	CROPP’s	internal	standards	currently	comply	with	the	na-
tional	 consensus,	 and	 the	 cooperative	 continues	 to	 take	an	active	
role	in	solidifying	the	language	and	certification	requirements	asso-
ciated	with	nearly	100%	grass-	fed	dairy	claims.

Feeding requirements
In	addition	 to	 the	dry	hay	and	 fermented	hay	 feeds	 that	are	al-

lowed	on	grass	milk	farms,	CROPP’s	grassmilk	standard	allows	the	
feeding	of	preboot	cereal	crops.	These	plants	do	not	contain	mature	
seeds,	only	plant	foliage	and	stem	material.	The	distinction	between	
grain	and	foliage	from	preboot	cereal	grain	crops	is	based	on	starch	
content.	Starch	is	associated	with	an	increase	in	ω-	6	FAs	in	the	feed	
and	in	the	resulting	milk.
Some	farmers	transitioning	cows	to	nearly	100%-	forage	diets,	or	

managing	grass	milk	herds,	need	the	option	to	include	preboot	cereal	

crops	in	their	conserved	feeds.	Such	feeds	increase	the	energy	con-
tent	of	 the	ration	and	help	sustain	cow	body	condition.	They	help	
minimize	ω-	6	FAs	in	the	ration	and	protect	the	integrity	of	“no	grain”	
claims	in	grass	milk	marketing.

Animal-care requirements
Beyond	fat	quality,	consumers	are	also	increasingly	interested	in	

animal	welfare.	A	variety	of	 indicators	associated	with	animal	wel-
fare	and	herd	health	are	finding	their	way	into	certification	require-
ments.	These	metrics	include	the	body	condition	of	lactating	cows,	
outdoor	 access,	 use	 of	 antibiotics	 and	 hormones,	 physical	 altera-
tions,	lameness,	living	conditions,	and	sources	of	animal	stress.
CROPP	grassmilk	farmers	are	subject	to	the	same	animal-	care	re-

porting	and	herd-	health	verifications	that	are	used	throughout	the	
cooperative.	 These	 include	 the	 National	 Milk	 Farmers	 Assuring	
Responsible	Management	(FARM)	requirements	for	body	condition,	
lameness,	access	 to	outdoors	and	water,	ventilation,	and	handling.	
Some	 CROPP	 animal-	welfare	 requirements	 go	 beyond	 those	 im-
posed	by	FARM,	such	as	prohibition	of	oxytocin,	a	drug	used	to	as-
sist	in	calving.
On-	site	audits	are	performed	by	staff	animal-	care	specialists	and	

qualified	field	staff	at	least	every	third	year	throughout	a	farm’s	tran-
sition	and	participation	 in	 the	program.	Audit	 follow-	up	addresses	
any	concerns	and	sets	forth	required	improvements.	Routine	visits	
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by	 CROPP	 staff	 also	 help	 track	 and	 troubleshoot	 any	 problems	
unique	to	a	given	farm	or	region.
Expert	advice	 is	available	to	grassmilk	farmers	to	help	them	im-

prove	 their	 forage	 quality	 and	 production	 levels,	 cow	 health,	 and	
profitability.	 Regular	 testing	 of	 bulk-	tank	milk	 FA	 levels	 is	 used	 to	
monitor	 compliance	 with	 the	 nearly	 100%	 forage-	based	 feed	
requirement.

Challenges and benefits of increasing reliance on forage-based 
feeds
Increasing	 forage-	based	 feeds	 usually	 reduces	milk	 production.	

Across	farms	of	all	sizes	in	2014,	rolling-	herd-	average	(RHA)	305-	day	
milk	production	was	14,513	lb/cow	on	grazing	 farms,	14,758	lb	on	
organic	farms,	and	21,862	lb	on	conventional	farms	(APHIS,	2014).
Within	CROPP,	organic	dairies	feeding	~20%	of	DMI	from	grains	

have	 RHAs	 in	 the	 range	 14,000	 to	 18,000	lb/cow,	 while	 most	
grassmilk	operations	achieve	RHAs	in	the	range	6,000	to	16,000	lb/
cow.	During	 the	 spring	 and	 early	 summer,	 cows	 in	 early	 lactation	
tend	to	produce	more	milk,	making	it	difficult	to	meet	energy	needs,	
especially	without	a	supplemental	energy	source	(e.g.,	molasses).
Increased	 reliance	 on	 grazing	 and	 forage-	based	 diets	 requires	

careful	 management	 of	 soil	 fertility,	 pasture	 composition,	 forage	
production,	 and	 animal	 health	 (especially	 locomotion).	Annual	 and	

perennial	forage	crops	are	managed	collectively	throughout	the	year	
to	provide	for	both	grazing	and	conserved	winter	feed.	The	extreme	
reliance	on	pasture	and	conserved	 forages	may	make	 these	 farms	
less	resilient	in	the	face	of	prolonged	drought	conditions.	It	remains	
to	 be	 seen	 whether	 availability	 and	 cost	 of	 high-	quality,	 off-	farm	
conserved	forage	put	these	farms	at	increased	risk	during	periods	of	
prolonged	 drought,	 leading	 to	 near-	complete	 forage	 crop/pasture	
losses.
In	 addition	 to	 challenges,	 grass	 milk	 farmers	 receive	 benefits.	

These	include	a	price	premium	(about	15%	on	CROPP	farms),	gen-
erally	 reduced	feed	costs,	and	protection	from	price	spikes	 in	or-
ganic	 grains	 and	 grain-	based	 supplements.	 Agronomically,	 these	
farms	 generally	 have	more	 tolerance	 for	 wet	 springs,	 which	 can	
delay	row-	crop	farming	practices	and	increase	weed	management	
challenges.
Environmental	benefits	also	accompany	the	shift	to	greater	reli-

ance	on	forage-	based	feeds	and	the	increased	acreage	in	perennial	
grass	communities.	Soil	health	tends	to	improve,	because	of	reduced	
tillage	 and	 year-	round	 perennial	 grass	 cover.	 This	 improvement	 in	
soil	health	generally	results	in	reduced	soil	erosion	and	less	sediment	
and	nutrient	run-	off	into	local	watersheds	compared	to	conventional	
tillage,	or	conservation	tillage-	based	crop	rotations.


