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Besides allowing us to perceive our surroundings, eye movements are also a window

into our mind and a rich source of information on who we are, how we feel, and

what we do. Here we show that eye movements during an everyday task predict

aspects of our personality. We tracked eye movements of 42 participants while they

ran an errand on a university campus and subsequently assessed their personality

traits using well-established questionnaires. Using a state-of-the-art machine learning

method and a rich set of features encoding different eye movement characteristics,

we were able to reliably predict four of the Big Five personality traits (neuroticism,

extraversion, agreeableness, conscientiousness) as well as perceptual curiosity only from

eye movements. Further analysis revealed new relations between previously neglected

eye movement characteristics and personality. Our findings demonstrate a considerable

influence of personality on everyday eye movement control, thereby complementing

earlier studies in laboratory settings. Improving automatic recognition and interpretation

of human social signals is an important endeavor, enabling innovative design of

human–computer systems capable of sensing spontaneous natural user behavior to

facilitate efficient interaction and personalization.

Keywords: eye tracking, real world, personality, machine learning, gaze behavior, eye-based user modeling

Eye movements facilitate efficient sampling of visual information from the world around us. For
example, in everyday social interactions, we often understand, predict, and explain the behavior and
emotional states of others by how their eyes move (Emery, 2000). The exact mechanisms by which
eye movement is controlled, and the range of factors that can influence it, are subject to intense
research (Wolfe, 1994; Martinez-Conde et al., 2004; Foulsham et al., 2011; Rucci and Victor, 2015).
Understanding the types of information eye movements convey is of current interest to a range
of fields, from psychology and the social sciences to computer science (Henderson et al., 2013;
Bulling et al., 2011; Bulling and Zander, 2014; Bixler and D’Mello, 2015; Steil and Bulling, 2015).
One emerging body of research suggests that the way in which we move our eyes is modulated
by who we are—by our personality (Isaacowitz, 2005; Rauthmann et al., 2012; Risko et al., 2012;
Baranes et al., 2015; Hoppe et al., 2015).

Personality traits characterize an individual’s patterns of behavior, thinking, and feeling (Kazdin,
2000). Studies reporting relationships between personality traits and eye movements suggest that
people with similar traits tend to move their eyes in similar ways. Optimists, for example, spend less
time inspecting negative emotional stimuli (e.g., skin cancer images) than pessimists (Isaacowitz,
2005). Individuals high in openness spend a longer time fixating and dwelling on locations when
watching abstract animations (Rauthmann et al., 2012), and perceptually curious individuals
inspect more of the regions in a naturalistic scene (Risko et al., 2012). But pioneering studies on
the association between personality and eye movements share two methodological limitations.

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2018.00105
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2018.00105&domain=pdf&date_stamp=2018-04-13
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bulling@mpi-inf.mpg.de
https://doi.org/10.3389/fnhum.2018.00105
https://www.frontiersin.org/articles/10.3389/fnhum.2018.00105/full
http://loop.frontiersin.org/people/511465/overview
http://loop.frontiersin.org/people/40153/overview
http://loop.frontiersin.org/people/498085/overview
http://loop.frontiersin.org/people/537430/overview


Hoppe et al. During Everyday Behavior

First, these early studies typically either investigated the
link between gaze and personality descriptively (e.g., using
correlation, Risko et al., 2012; Rauthmann et al., 2012) or
predicted single gaze characteristics, such as the number of
fixations (Isaacowitz, 2005; Risko et al., 2012; Rauthmann
et al., 2012), from personality scores. For practical applications,
however, the more relevant question is whether, in turn, eye
movements can be used to predict personality traits. Intriguingly,
machine learning techniques provide a way of answering this
question without the need to make a-priori hypotheses about the
importance of individual gaze characteristics. Instead, the most
informative characteristics can be automatically determined from
a potentially large and diverse set of eyemovement characteristics
and patterns; thereby also uncovering previously unknown links
between personality and gaze. The potential of machine learning
for predicting behavior, cognitive states and personality has been
highlighted in a few studies (Henderson et al., 2013; Bulling and
Zander, 2014; Bixler and D’Mello, 2015; Hoppe et al., 2015).
A recent laboratory study, for example, successfully predicted
people’s epistemic curiosity about answers to trivia questions
from oculomotor behavior (Baranes et al., 2015).

The second limitation of earlier studies is their restriction
to laboratory conditions – an approach that has been criticized
because it may not lead to valid theories of human behavior
in natural settings (Kingstone et al., 2003, 2008). In most
studies, carefully selected stimuli – such as images, animations,
or trivia questions – were presented to participants for
defined durations on a computer screen, and participants’ eye
movements were then related to the personality traits under
investigation (Isaacowitz, 2005; Rauthmann et al., 2012; Risko
et al., 2012; Baranes et al., 2015). However, principles guiding
the eyes when looking at computer screens and when engaging
in dynamic real-world behavior differ significantly (Foulsham
et al., 2011; Tatler et al., 2011; Tatler, 2014). Compelling evidence
for such differences is provided in a study which tracked eye
movements of participants when they were exploring different
real world environments and when watching videos of these
environments (Marius’t Hart et al., 2009). The distribution of
eye movements obtained in the laboratory only predicted the
gaze distribution in the laboratory with around 60% accuracy—
indicating significant differences in eye movements between
laboratory and real world situations (Foulsham et al., 2011). It
therefore remains unclear whether these personality traits found
to be related to eye movements in the laboratory (Isaacowitz,
2005; Rauthmann et al., 2012; Risko et al., 2012; Baranes et al.,
2015) generalize to real-world behaviors. If so, then links between
eye movements and personality have important ramifications
for the emerging fields of social signal processing, social
robotics, and eye-based user modeling. These interdisciplinary
fields—at the intersection of computer science, social science,
and psychology—focus on the development of systems that
can sense, model, and understand everyday human social
signals (Vinciarelli et al., 2009;Wagner et al., 2011; Vinciarelli and
Pentland, 2015) and that exhibit human-like behavior, including
personality (Fong et al., 2003). Ultimately, such socially-aware
computers have the potential to offer interactive capabilities that
closely resemble natural human-human interactions.

In the present work we demonstrate, for the first time, that
the visual behavior of individuals engaged in an everyday task
can predict four of the Big Five personality traits (McCrae and
Costa, 2010), along with perceptual curiosity (Collins et al., 2004).
To this end, we develop and study a large set of features that
describe various characteristics of everyday visual behavior. This
approach goes beyond existing analyses of individual features
and provides a principled demonstration of the link between
eye movement and personality. Our findings not only validate
the role of personality in explaining eye movement behavior in
daily life, they also reveal new eye movement characteristics as
predictors of personality traits.

1. METHODS

Fifty students and staff of Flinders University participated in
the study: 42 females and eight males, with a mean age of 21.9
years (SD 5.5). The convenience sample was recruited through an
advertisement on the School of Psychology’s online participation
management system and the sample size was based on Risko
et al. (2012). Written informed consent was obtained from all
participants and participant received AUD15 for taking part
in the study. Ethic approval was obtained from the Human
Research Ethics Committee at Flinders University and the study
was conducted in accordance with the Declaration of Helsinki.

1.1. Apparatus
Binocular gaze data were tracked using a state-of-the-art
head-mounted video-based eye tracker from SensorMotoric
Instruments (SMI) at 60Hz. The tracker has a reported gaze
estimation accuracy of 0.5◦ and precision of 0.1◦. The tracker
recorded gaze data, along with a high-resolution scene video on
a mobile phone that was carried in a cross-body bag.

1.2. Questionnaires
Personality traits were assessed using three established self-report
questionnaires: 1) The NEO Five-Factor Inventory (NEO-FFI-
3) comprising 60 questions assessing neuroticism, extraversion,
openness, agreeableness, and conscientiousness (McCrae and
Costa, 2010); 2) Perceptual Curiosity, a 16-item questionnaire
assessing a person’s interest in novel perceptual stimulation
and visual-sensory inspection (Collins et al., 2004); and 3)
the Curiosity and Exploration Inventory (CEI-II), a 10-item
questionnaire assessing trait curiosity (Kashdan et al., 2009).

1.3. Procedure
Upon arrival in the laboratory, participants were introduced
to the study and fitted with the eye tracker. The tracker was
first calibrated using a standard 3-point calibration routine.
Participants were then given AUD5 and instructed to walk
around campus for approximately 10 min and to purchase any
items of their choice (such as a drink or confectionary) from
a campus shop of their choice. Upon return, the tracking was
stopped and the glasses were removed. Participants were then
asked to fill in the personality and curiosity questionnaires.
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2. DATA PROCESSING

The data from one participant were lost due to technical
problems with the eye tracking equipment. Any sample where the
pupil could not be detected, or the gaze direction was estimated
to be beyond 150% of its range, was marked as erroneous.
Six participants with more than 50% erroneous samples in
their recording were excluded from further analysis; one other
participant was excluded because gaze direction was estimated to
be constant for 38% of samples. For the remaining 42 participants
an average of 12.51 minutes (SD = 2.71) of eye tracking data
were collected, with an average track loss of 19.58% (SD = 0.12).
The recording included an average 2.36 minutes inside the shop
(SD= 1.70).

We independently binned personality scores for each trait
into three score ranges (low, medium, and high). The binning
was performed in a data-driven fashion so that approximately
one third of the participants were assigned to each score
range. The middle bin’s boundaries were defined as the score
percentile at 1/3 and 2/3 respectively. Because personality scores
approximately follow a Gaussian distribution, the range of
medium scores was smaller than the range for the two extreme
classes. Table 2 in the appendix lists all resulting boundaries
between score ranges.

Both data and source code are publicly available on GitHub1.

2.1. Feature Extraction
Following best practices in eye-based user modeling (Bulling
et al., 2011), the time series of gaze data was processed using
a sliding window approach to make the data independent of
the individual duration of the recording while not blurring out
gaze characteristics due to averaging effects. That is, only data
from a time window of a certain length were considered at one
time. Different window sizes were evaluated during our training
routine (see below for details). The window was slid over the
entire recording such that all subsequent windows had an overlap
of 50%. Time windows that had more than 50% erroneous
samples (i.e., where the pupil could not be detected or the gaze
direction was estimated to be beyond 150% of its range), less
than 2 non-erroneous samples, or not a single detected fixation
or saccade, were discarded. For each resulting time window, a
vector of 207 features was extracted (see the Appendix for a list
of all features). These features include:

1. Statistics over raw gaze data: These were introduced
in Baranes et al. (2015) for the detection of epistemic curiosity
under laboratory conditions. Many of the features were
specific to the user interface used, for instance the distance
of the participant’s gaze from a box in the interface but
others such as minimum, mean and maximum of gaze x or
y coordinates were adopted to our setting.

2. Heatmaps of raw gaze data have been linked to curiosity in
a study on a static scene viewing task (Risko et al., 2012).
Analogously, an 8 by 8 heatmap of gaze points has been
extracted here. Over time a heatmap cell corresponds to
different places in the world due to head and body motion.

1https://github.molgen.mpg.de/sabrina-hoppe/everyday-eye-movements-

predict-personality

Since some gaze points were extrapolated to positions quite
far from the actual scene video, gaze points were only used
if they fell within the intervals spanning 95% of the data in
both horizontal and vertical direction. The heatmap cells were
enumerated from 0 in the top left corner, through 7 in the top
right corner, to 63 in the bottom right corner.

3. Statistics over fixations, saccades and blinks have frequently
been used in eye tracking studies (Bulling et al., 2011;
Rauthmann et al., 2012; Risko et al., 2012). Fixations
were detected using a dispersion-threshold algorithm with a
threshold of 2.5% of the tracking range width (5) with an
additional threshold on the minimum duration of 100ms. All
movements between two fixations were inspected as candidate
saccades and were accepted if they did not exceed a maximum
duration of 500ms and had a peak velocity of at least 200%
of the tracking range per second. Both fixations and saccades
with more than 50% erroneous samples were discarded.
Additionally, the eye tracking software provided information
on blinks and pupil diameter. From all events (i.e., fixations,
saccades, and blinks), a number of statistics was computed
such as the mean duration of fixations and the direction of
saccades. A full list of these features can be found in the
Appendix.

Note that “fixations” of up to 500ms are likely to include
smooth pursuits that we did not consider separately since
robust pursuit detection is still an open research question even
for controlled laboratory settings (Hoppe and Bulling, 2016).

4. Information on the temporal course of saccades and fixations
has previously been encoded in so-called n-gram features
for eye-based user modeling (Bulling et al., 2011). n-grams
describe a series of gaze events, e.g., saccades with different
amplitudes (large or small) and directions binned into 8
possible directions (e.g., [“long saccade up,” “short fixation,”
“short saccade up”] for n = 3). Finally, a histogram of n-
grams was computed by counting how often each n-gram,
i.e., each possible combination of saccades and fixations,
occurred. For each n between 1 and 4, the following features
were extracted from the histogram: number of different n-
grams (i.e., number of non-zero entries in the histogram),
maximum/minimum/mean/variance of the histogram entries
and the most/least frequent n-gram.

For each personality trait, a separate random forest

classifier (Breiman, 2001) consisting of 100 decision trees
was trained on these features to predict one of the three

personality score ranges (low, medium, high) using SCIKIT-

LEARN (Pedregosa et al., 2011). Each decision tree resembles a

tree-shaped flow-chart of decisions, where we set the maximum
depth of each tree to 5 and allowed up to 15 features to be

considered per decision. Before each training procedure, a

standard scaler was fit to the training data and applied to both
training and test samples to ensure a mean of zero and a standard

deviation of one for each feature.
We had no a priori hypothesis concerning which window

size for the sliding-window approach would be most effective, or
which particular features would be useful. We therefore chose an
automatic approach named nested cross validation to optimize the
open parameters during training, i.e., window size and feature
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selection. In a nutshell, a nested cross validation cycles through
sets of participants: one training set, one validation set, and
one test set. For instance, in the first iteration, participants 1-
32 might be used for training, participants 33–37 for validation,
and participants 38–42 for testing. In the second iteration,
participants 5–37 might be used for training, then participants
10–42 and so on. In all iterations, several classifiers based on
different window sizes and subsets of features were trained on
the training set and evaluated on the validation set. The best
performing window size and subset of features was chosen based
on the performance on the validation set. A classifier was then
trained on the union of training and validation set and tested on
the test set to generate the final performance scores reported here.
It is important to select parameters based on performance on
the validation set and then re-train and evaluate on another test
set, because with this scheme, the parameters were never directly
optimized for the final evaluation. Therefore, cross validation
effectively mitigates the risk of overfitting—the algorithm is
forced to generalize to unseen data.

2.2. Classifier Evaluation
Classifier performance was evaluated in terms of average F1 score
across the three score ranges. The F1 score for a particular range
R is defined as the harmonic mean of precision (the probability
that the true personality score range for a random person out
of those for which R was predicted is indeed R) and recall
(the probability that R will be predicted for a randomly chosen
participant whose true personality score is within R). Since the
training procedure for random forest classifiers is inherently non-
deterministic, we went through the whole nested cross-validation
scheme 100 times with different initial random states.

We compared our classifier against several random baselines
to determine how likely our classification success was according
to simpler or trivial classifiers:

1. Theoretical chance level: if all predictions were made
uniformly at random and all score ranges are equally likely,
the resulting F1 score for three balanced classes should be 0.33.
Slight deviations from these assumptions, e.g., unbalanced
classes, could in practice lead to different results. Thus, we
implemented a simple classifier that randomly sampled one
of the three score ranges for each person from a uniform
distribution.

2. Predicting the most frequent score range: For this evaluation,
the training and test set were built in an identical manner to
the actual training process, but instead of fitting a classifier, the
most frequent score range on the training set was determined
and then predicted for every person in the test set. Note
that this might be slightly different from the theoretical 33%
because the splits into training and test set might distort the
label frequencies.

3. The label permutation test (Ojala and Garriga, 2010) was
proposed to determine the level of performance after any
relation between features and score ranges was obfuscated, i.e.,
the training data was artificially shuffled such that the relation
between gaze and personality was lost. If this classifier is able to
perform above a theoretical chance level it might for instance

have picked up class frequencies. Thus, it can serve as a test
of how much actual information from the gaze features was
learned by our original classifier (Bode et al., 2012).

Each of these baselines was computed 100 times, so a set of 100
F1 scores per baseline was obtained and compared to those of our
classifier.

3. RESULTS

Figure 1 shows the mean F1 score for our classifier as well as
for all baselines for each trait. As can be seen from the figure,
our classifier performs well above chance (that is, confidence
intervals do not overlap with any of the baseline performances)
for neuroticism (40.3%), extraversion (48.6%), agreeableness
(45.9%), conscientiousness (43.1%), and perceptual curiosity
(PCS, 37.1%). For openness (30.8%) and the Curiosity and
Exploration Inventory (CEI, 27.2%) our classifier performs below
chance level.

In the above evaluation, all recorded data were used
irrespective of participants’ context: that is, regardless of whether
they were on their way to the shop, or inside the shop. To evaluate
the reliability of classifiers within and across different parts of
the recording, times at which people entered and left the shop
were manually annotated based on the recorded scene video.
We then compared their predictions across different subsets
of the data: (1) independent of the participant’s activity (two
halves of the recording: split halves); (2) within one activity
(the way to the shop vs. the way back to the laboratory: way
I vs. II); and (3) across activities (navigation on the way vs.
shopping inside: shop vs. way). For each comparison, we used
the 100 classifiers trained for the first part of the paper and
reconstructed the predictions for single time windows (i.e.,
the predictions before majority voting). Majority voting was
performed over time windows from the context in question only,
such as from time windows when the participant was inside
the shop. As each classifier had been trained and evaluated 100
times, this led to 100 pairs of predictions for each comparison.
Reliability was then evaluated by the average correlation
between these pairs of predictions after correction for the
skewness of the sampling distribution of correlation coefficients,
using the Fisher transformation (Fisher, 1915). The resulting
Pearson product-moment correlation coefficients are shown in
Table 1. The coefficients ranged from 0.39 to 0.83, indicating a
moderate to strong correlation between these different real-world
contexts.

To investigate in more detail how eye movement
characteristics are linked to individual personality traits, we
further calculated the relative importance of all features from
the random forest classifier as suggested in Breiman (2001). A
random forest classifier comprises several decision trees. The
importance of a feature in the random forest is defined as its
average importance across all the component decision trees.
Within a single decision tree, a feature’s importance is defined via
all decisions that are made based on that feature: the greater the
number of decisions made, the smaller the mean classification
error and the more data is passed through these decisions in the
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FIGURE 1 | Mean F1 scores of 100 instances of our classifier and three baselines per trait. The whiskers indicate the 95% confidence interval around the mean,

computed by bootstrapping with 1,000 iterations on the set of 100 F1 scores for each trait. All results were obtained using a cross-validation scheme such that only

predictions for unseen participants were used for evaluation. The dashed line shows the theoretical chance level for a classifier that randomly picks one personality

score range for each participant, independent of gaze.

TABLE 1 | Pearson product-moment correlation coefficients of predictions

obtained from different parts of the recording: in the first half vs. the second half

(split halves), on the way to the shop vs. on the way back to the laboratory (way I

vs. II) and inside the shop vs. outside the shop (shop vs. way).

half I vs. half II way I vs. way II shop vs. ways

Neuroticism 0.77 0.75 0.63

Extraversion 0.83 0.75 0.61

Openness 0.64 0.60 0.39

Agreeableness 0.63 0.56 0.44

Conscientiousness 0.69 0.72 0.43

Perceptual Curiosity 0.68 0.65 0.46

Curiosity and Exploration 0.68 0.65 0.44

tree structure, the more important the feature that the decision
was based on Breiman (2001).

Figure 2 shows the most important features for our trait-
specific classifiers sorted in ascending order by their median
importance across all traits. The features were chosen as the
smallest set containing the individual ten most important
features for each trait according to our method, as well as those
features previously linked to personality in Rauthmann et al.
(2012), Risko et al. (2012), and Baranes et al. (2015).

As can be seen from Figure 2, five of the 19 most important
features are linked to n-grams (Bulling et al., 2011), which
describe a series of n saccades. In contrast to the saccade-
based n-grams, n-grams encoding fixation–saccade sequences
are less important. Heatmap features similar to those in Risko
et al. (2012), which capture how often a participant looked
into certain areas of their visual field, were the second most
important class of features. Moreover, the average variance in
pupil diameter during fixations and blink rate turned out to be
informative. Complementing the F1 scores that are commonly

reported when evaluatingmachine learningmethods with respect
to performance, we also provide correlation coefficients between
personality scores and the different eye movement features
extracted from a sliding window with a length of 15 s (see Table 3
in the Appendix).

4. DISCUSSION

One key contribution of our work is to demonstrate, for the
first time, that an individual’s level of neuroticism, extraversion,
agreeableness, conscientiousness, and perceptual curiosity can
be predicted only from eye movements recorded during an
everyday task. This finding is important for bridging between
tightly controlled laboratory studies and the study of natural eye
movements in unconstrained real-world environments.

While predictions are not yet accurate enough for practical
applications, they are clearly above chance level and outperform
several baselines (see Figure 1). The proposed machine learning
approach was particularly successful in predicting levels of
agreeableness, conscientiousness, extraversion, and perceptual
curiosity. It therefore corroborates previous laboratory-based
studies that have shown a link between personality traits and eye
movement characteristics (Isaacowitz, 2005; Risko et al., 2012;
Rauthmann et al., 2012; Baranes et al., 2015).

The trait-specific eye movement characteristics are reliable:
Comparing predictions after splitting the recordings into two
halves yielded reliability values ranging between 0.63 and 0.83,
indicating moderate to strong correlations between predictions
derived from the different halves of the recording. The reliability
values were lower (0.39–0.63) when the predictions were
based on the comparison between two task activities (walking
and shopping). These findings suggest that trait-specific eye
movements vary substantially across activities. Future work
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FIGURE 2 | The top half of the figure shows the importance of the top-10 features for each trait, sorted by their median importance across all traits. The bottom half

shows the importance of further features that were related to personality or curiosity in prior work. The boxes represent the distribution over feature importance

obtained from the 100 models we trained. Each of the boxes spans the inter-quartile range (IQR); the whiskers extend to the minimum and maximum. The dark bar

inside each box represents the median. For each classifier, many features remained unused and therefore had an importance of zero. Where most importance values

were zero, the box is often invisible.

could therefore establish which activities are best suited to elicit
trait-specific eye movements, as this could significantly improve
both prediction accuracy and reliability for practical applications.

A second contribution of our work is to shed additional
light on the close link between personality traits and an
individual’s eye movements. Thanks to the machine learning
approach, we could automatically analyze a large set of eye
movement characteristics and rank them by their importance
for personality trait prediction. Going beyond characteristics
investigated in earlier works, this approach also allowed us
to identify new links between previously under-investigated
eye movement characteristics and personality traits. This
was possible because, unlike classical analysis approaches,
the proposed machine learning method does not rely on
a priori hypotheses regarding the importance of individual
eye movement characteristics. Specifically, characteristics that
capture rich temporal information on visual behavior seem
to convey fundamental information related to all personality
traits, and consistently outperform classic characteristics that
have been isolated for investigation in laboratory situations,
such as fixation duration (Isaacowitz, 2005; Rauthmann et al.,
2012; Risko et al., 2012). By extracting the most important
eye movement characteristics for each personality trait (see
Figure 2) we also found that the importance of characteristics
varies for different personality traits. For example, pupil diameter
was important for predicting neuroticism but was less useful

for predicting other traits. It is important to note that the
goal of the current study was not to shed light on the
underlying reasons for why certain eye movement characteristics
are more common in particular personality types. Instead, it
was specifically designed to explore whether machine learning
can be used to classify personality from eye movements in an
everyday task.

The prediction accuracy and reliability scores obtained from
42 participants are very promising. However, in computer vision,
state-of-the-art machine learningmethods are commonly trained
on millions of samples (Russakovsky et al., 2015). These
large-scale datasets have facilitated data-driven development and
automatic learning of features, often outperforming previous
manually designed characteristics (Le, 2013). For the field of
personality research, obtaining larger datasets with a more
representative sample of the general population than the
convenience sample of the current study will be an important
next step. Consequently, large-scale real-world gaze datasets
are likely to improve automatic inference of personality
and stimulate research on the automatic representation of
gaze characteristics, with the potential to further improve
performance as well as deepen our understanding of the interplay
between gaze and personality. Importantly, whether the poor
performance of our algorithm in predicting openness and CEI
is due to the experimental design (relatively small sample and
the specific task of running an errand) or due the possibility that
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there is no link between openness and the way eyes are moved
cannot be answered at this stage.

Four important questions arise from our findings: (1) How
well do our findings generalize to non-university populations,
different personality traits, different settings and other real-world
activities? (2) How is the prediction of personality traits affected
by temporary user states, such as mood, fatigue or even the
person’s awareness of the eye tracker (Risko and Kingstone,
2011)? (3) How do gaze-based signals interact with further social
cues that are linked to personality, such as body posture (Ball and
Breese, 2000) or digital footprints (Youyou et al., 2015)? and (4)
how can a system exploit several cues to derive a more holistic
view on the user’s personality?

Answering these questions will guide research to improve our
understanding of how human eye movements are modulated
in the real world (Kingstone et al., 2003; Risko and Kingstone,
2011), and how they fit into the broad spectrum of human non-
verbal behavior. In turn, improved theoretical understanding will
assist the emerging interdisciplinary research field of social signal
processing, toward development of systems that can recognize
and interpret human social signals (Vinciarelli et al., 2009;
Wagner et al., 2011; Vinciarelli and Pentland, 2015).

Such knowledge of human non-verbal behavior might also
be transferred to socially interactive robots, designed to exhibit
human-like behavior (Fong et al., 2003). These systems might
ultimately interact with humans in a more natural and socially
acceptable way, thereby becoming more efficient and flexible.
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