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Human and animal studies suggest an intriguing link between mitochondrial diseases
and depression. Although depression has historically been linked to alterations
in monoaminergic pharmacology and adult hippocampal neurogenesis, new data
increasingly implicate broader forms of dampened plasticity, including plasticity within
the cell. Mitochondria are the cellular powerhouse of eukaryotic cells, and they also
regulate brain function through oxidative stress and apoptosis. In this paper, we
make the case that mitochondrial dysfunction could play an important role in the
pathophysiology of depression. Alterations in mitochondrial functions such as oxidative
phosphorylation (OXPHOS) and membrane polarity, which increase oxidative stress
and apoptosis, may precede the development of depressive symptoms. However, the
data in relation to antidepressant drug effects are contradictory: some studies reveal
they have no effect on mitochondrial function or even potentiate dysfunction, whereas
other studies show more beneficial effects. Overall, the data suggest an intriguing
link between mitochondrial function and depression that warrants further investigation.
Mitochondria could be targeted in the development of novel antidepressant drugs,
and specific forms of mitochondrial dysfunction could be identified as biomarkers to
personalize treatment and aid in early diagnosis by differentiating between disorders
with overlapping symptoms.
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MITOCHONDRIA

Mitochondria are the main energy factories of eukaryotic cells. The brain is particularly dependent
on mitochondrial activity due to both its high levels of energy use and its inability to store large
amounts of energy reserves in the form of glycogen. As a result of the their roles in energy
production, mitochondria also generate reactive oxygen species (ROS) that may have a toxic effects
in cells. In addition, mitochondria also play a prominent role in the regulation of apoptotic cell
death (for examples, see Davidson and Hardison, 1984; Herrmann and Neupert, 2000; Calabrese
et al., 2001; Chan, 2006; Chipuk et al., 2006; Fattal et al., 2006; McBride et al., 2006; Youle and van
der Bliek, 2012; Tobe, 2013; Bansal and Kuhad, 2016).
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The focus of this review is the link between mitochondrial
dysfunction and major depression. Depression has historically
been considered a disorder of altered pharmacology and altered
hippocampal neurogenesis. However, recent evidence has opened
the door to an expanded notion of the neurobiology of
depression, such that a reduction in ATP levels, enhancement of
oxidative stress, and acceleration of apoptosis are now considered
to be important events (reviewed in Rezin et al., 2008a). In
this review, we summarize some of the latest knowledge on
mitochondrial dysregulation in major depression (depicted in
Figure 1) and also discuss how mitochondrial dysfunction could
instigate downstream changes in extracellular matrix proteins
such as reelin, neuronal nitric oxide (nNOS), oxidative stress,
and inflammation, and finally adult hippocampal neurogenesis.
Uncovering how all these factors influence one another could lead
to new vistas in the development of novel therapeutics for the
treatment of this problematic disorder.

HYPOTHESES ABOUT THE
NEUROBIOLOGICAL BASIS OF
DEPRESSION

Depression is a common neuropsychiatric disorder, affecting up
to 20% of the population (Kessler et al., 1994). The presence and
severity of symptoms vary among individuals, and can include
low mood and anhedonia, decreased energy, altered appetite
and weight, irritability, sleep disturbances, and cognitive deficits
(Nemeroff, 1998). Patients with depression have a higher rate of
other physical illnesses (i.e., comorbidities with cardiovascular
disorders, stroke, etc.), decreased social functioning, and a high
mortality rate (Nemeroff, 1998). The complexity of this disorder
is further compounded by the fact that it often co-occurs
with other psychiatric conditions. For example, about 50% of
depression patients also suffer from anxiety disorders (Kessler
et al., 1996), which can indicate a more severe form of the disease,
with delayed recovery, increased risk of relapse, greater disability,
and increased suicide attempts (Hirschfeld, 2001). It is generally
thought that a combination of environmental and genetic factors
influences the development of depression (Nestler et al., 2002;
Kalia, 2005). However, despite extensive clinical and preclinical
research efforts, there is still a fundamental lack of understanding
about the specific biological changes that give rise to depressive
symptoms.

For more than 50 years, the dominant theory for the
pathogenesis of depression was the monoamine hypothesis
(Schildkraut, 1965), which arose from observations that
antidepressant drugs work by inhibiting the reuptake of
monoamines such as serotonin and norepinephrine. However,
this theory has largely fallen out of favor due to a number of
discrepancies, such as the fact that the therapeutic effects of
antidepressants take weeks to develop even though monoamine
levels are elevated within hours of administration, and the
fact that only about 40% of patients respond satisfactorily to
treatment (Trivedi et al., 2006). More recent theories about
the neurobiological basis of depression have focused on the
neurogenesis theory, which posits that stress-induced decreases

in hippocampal neurogenesis could be a causal factor in
depression (Jacobs et al., 2000). This hypothesis is supported
by observations of decreased hippocampal volume in patients
with depression (MacQueen et al., 2003; Campbell et al., 2004),
decreased cell proliferation and survival in preclinical animal
models of depression (Brummelte and Galea, 2010; Schoenfeld
and Cameron, 2015), and increased cell proliferation and
survival after antidepressant treatment (Santarelli et al., 2003;
Fenton et al., 2015). Our laboratory has contributed to this
literature using a well-validated preclinical model of depression
in which rats or mice are subjected to daily injections of the stress
hormone corticosterone (CORT) for several weeks, followed
by behavioral testing and then tissue collection for further
analyses (Gregus et al., 2005; Johnson et al., 2006; Sterner
and Kalynchuk, 2010). Using this approach, we showed that
the time course for the onset of depression-like behavior in
rats is paralleled by dampened hippocampal neurogenesis and
neuronal maturation (Lussier et al., 2013). Importantly, this
work also implicated the extracellular matrix protein reelin
in the pathogenesis of depression (see Caruncho et al., 2016).
There is evidence that reelin can regulate adult hippocampal
neurogenesis and dendritic spine plasticity (Pujadas et al.,
2010), and our data show that rats subjected to repeated CORT
injections have dampened reelin expression selectively in the
proliferative subgranular zone of the dentate gyrus (Lussier
et al., 2009) and also that antidepressant treatment normalizes
depression-like behavior, hippocampal neurogenesis, and
hippocampal reelin expression in tandem (Fenton et al., 2015).
The reelin link is relevant to mitochondrial dysfunction because
reelin in the periphery interacts with the immune system and
a loss of reelin can magnify markers of inflammation that
influence mitochondria (Green-Johnson et al., 1995). This issue
is discussed in more detail in the section below on reelin and
inflammation.

It is important to note that the neurogenesis hypothesis
of depression is somewhat controversial because depression-
like symptoms can occur even when cell proliferation is not
decreased and the behavioral actions of antidepressants do not
always coincide with increases in the number of hippocampal
neurons (Surget et al., 2008; Bessa et al., 2009; David et al., 2009).
Instead, some data suggest that depression and the therapeutic
actions of antidepressants may be more related to alterations in
dendritic complexity and neuronal remodeling than cell number
per se (Bessa et al., 2009; Lussier et al., 2013). The neurogenesis
hypothesis of depression may therefore be better described as
the neuroplasticity hypothesis of depression – a broadening of
concept that would include plasticity within the cell, such as
mitochondrial activity.

Because the brain has high aerobic activity, requiring about
20 times more energy than the rest of the body by weight
(Kety, 1950), it is highly vulnerable to conditions stemming
from impaired energy production. A resting cortical neuron
consumes 4.7 billion ATP molecules every second (Zhu et al.,
2012). Evidence from post-mortem (Kato et al., 1997; Konradi
et al., 2004; Iwamoto et al., 2005; Munakata et al., 2005),
imaging (Frey et al., 2007), genetic (Kato et al., 1997; Kato
and Kato, 2000; Iwamoto et al., 2005; Benes et al., 2006),
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FIGURE 1 | The mitochondrion under normal physiological conditions and in the depression brain. As detailed in the right side of the image, there are a series of
mitochondrial alterations that have been observed both in depressed patients and in animal models of depression (red lines). These include changes affecting
mitochondrial DNA, membrane permeability, and increased formation of reactive oxygen species (ROS). As a consequence, these alterations lead to
pro-inflammatory activity, increased apoptosis, and dampened synaptic plasticity and neuronal differentiation. Interestingly, antidepressant medication can restore the
mitochondrial oxidant/antioxidant balance, and therefore help to rescue the negative effects of mitochondrial dysregulation (green lines). See the text for more
detailed explanations.

and cellular (Cataldo et al., 2010) studies is plentiful in
showing the involvement of mitochondrial dysfunction in bipolar
disorder and schizophrenia. Studies are also emerging providing
evidence that mitochondria-mediated mechanisms are related to
depressive symptoms (reviewed in Castren, 2005; Tobe, 2013;
Shimamoto and Rappeneau, 2017; Petschner et al., 2018), that
mitochondrial mutations are witnessed in individuals diagnosed
with depression (Munakata et al., 2007; Ben-Shachar and Karry,
2008) and that the two diseases are often comorbid (Koene et al.,
2009; Morava et al., 2010).

Mitochondria could play a role in the dampened plasticity
associated with depression. Depression is associated with
abnormalities in intracellular second messenger signal
transduction cascades resulting from 5HT and NE receptor
activation (Perez et al., 2000; Popoli et al., 2000) and dysregulated
and desensitized monoamine receptors (Hamon and Blier, 2013).
These observations can be related to mitochondrial dysfunction
because ATP is needed for the activation of downstream
signaling following the binding of neurotransmitters to receptors
(Moretti et al., 2003). ATP is also necessary to attend to the
energy demands of vesicle transport and neurotransmitter
release (reviewed in Vos et al., 2010; and more recently in Devine
and Kittler, 2018). Furthermore, patients with mitochondrial
diseases or mitochondrial DNA (mtDNA) mutations and
polymorphisms often present symptoms characteristic of
mood disorders (Suomalainen et al., 1992; Onishi et al.,
1997; Kato et al., 2001; Fattal et al., 2006; Morava et al.,
2010). Higher rates of mitochondrial biogenesis are needed
for neuronal differentiation (Calingasan et al., 2008) and
therefore, dysfunctional mitochondria could result in impaired
neuroplasticity in depressed patients.

GENETICS

There have been many observations of links between mtDNA and
depression. As mentioned above, depression is a heterogeneous
disorder, with several different symptom profiles, and genetic
background contributes to its development (Lesch, 2004).
Prevalence rates for depression are as high as 54% in patients
with mitochondrial diseases (Fattal et al., 2007). However, not
all patients who have the same mitochondrial gene mutations
develop depressive symptoms, indicating a genetic and non-
genetic interplay of factors (Koene et al., 2009). Mitochondrial
disorders may result from mutations in nuclear DNA or mtDNA,
with the amount of mtDNA mutations possibly correlating with
disease severity (Chinnery et al., 2000). In one interesting study,
long-PCR revealed that 68% of patients with depression have
mtDNA deletions, compared to 36% of control subjects (Gardner
et al., 2003). Similarly, in leukocytes of depressed patients,
mtDNA copy number variates were significantly lower than in
control subjects, and mtDNA oxidative damage was increased
(Chang et al., 2015). Interestingly, oxidized mtDNA activates
pro-inflammatory cytokines (Adzic et al., 2016) and increased
inflammation is known to play a role in the development of
depressive symptoms (e.g., Brymer et al., 2018; Wang et al., 2018).
Variations in mtDNA have also been shown to cause cognitive
impairments in mice (Sharpley et al., 2012) and in humans
(Inczedy-Farkas et al., 2014; Petschner et al., 2018), and cognitive
deficits are a common symptom associated with depression.

Beyond these general linkages between mtDNA and
depression, recent research has implicated a number of
specific mitochondrial genes in depression. This topic has been
reviewed in detail recently (Petschner et al., 2018), so only
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a few examples will be mentioned here. A recent systematic
assessment using mitochondrial PCR array profiling identified
16 genes that were differentially expressed in the dorsolateral
prefrontal cortex of post-mortem brains from depressed patients
compared to control subjects (Wang and Dwivedi, 2017). The
identified genes are ones known to govern oxidative stress
and neuronal ATP levels, suggesting for the first time that
mitochondrial genes might be altered in tissue samples from
human patients. Similarly, the mitochondrial ATP6V1B2 gene
has been implicated in depression, possibly through its effects
on neurotransmission and receptor-mediated endocytosis
(Petschner et al., 2018). Less direct evidence comes from
observations that mice with mutations of the POLG gene, which
encodes a subunit of mtDNA polymerase, exhibit depression-like
symptoms (Kasahara et al., 2006), and that polymorphisms of
genes that code for mitochondrial enzymes, such as MTHFD1L,
are associated with negative rumination, which is a precursor
to depression (Eszlari et al., 2016). This polymorphism is also
associated with high levels of homocysteine, which has been
related to hippocampal volume and depression (Moustafa et al.,
2014).

These examples point to an intriguing link between mtDNA or
gene expression and depression, though more work needs to be
done in this area, particularly to identify gene alterations in tissue
from human patients.

PROTEOMIC STUDIES

There have been many studies indicating the involvement of the
oxidative phosphorylation (OXPHOS) pathway in depression.
Proteomic studies conducted on post-mortem brains from
depressed patients suggest that about 21% of dysregulated
proteins are also commonly dysregulated in patients with
schizophrenia and bipolar disorder (Saia-Cereda et al., 2017;
Villa et al., 2017). In a mutant mouse model of depression, a
dysregulated OXPHOS pathway was seen in the hippocampus
(Zubenko et al., 2014), which is a key region of dampened
plasticity in both human depression and rodent models (Sheline
et al., 2003; Frodl et al., 2006; Sterner and Kalynchuk, 2010).
In addition, proteomic studies using different animal models of
depression have revealed alterations in specific proteins involved
in OXPHOS and also confirmed the effect of antidepressant
treatment in the expression of these proteins (reviewed in
Carboni, 2015).

In depressed patients, most of the differentially expressed
proteins are involved in cellular assembly, organization,
function, and maintenance, as well as cardiovascular system
development and function, but they are mainly related to
deregulation of energy metabolism pathways (Martins-
de-Souza et al., 2012). Twenty different subunits of the
OXPHOS complex were increased in post-mortem brains from
depressed patients (Martins-de-Souza et al., 2012), whereas
the opposite effect has been seen in brains from patients with
schizophrenia (Martins-de-Souza et al., 2011). A proteomics
approach also revealed that the SSRI fluoxetine upregulated
and downregulated 23 and 60 cytosolic mitochondrial-related

proteins, respectively (Filipović et al., 2017). In addition, 60
non-synaptic mitochondrial-related proteins were upregulated
whereas three were downregulated. These effects were largely
confirmed in a subsequent study (Głombik et al., 2017).
When looking at samples from the dorsolateral prefrontal
cortex, which shows reduced activation and volume in
patients with depression (Drevets et al., 1998; Halari et al.,
2009), a shotgun label-free approach revealed that 32% of
differentially expressed proteins associated with depression
were involved in metabolic/energy pathways (Martins-de-Souza
et al., 2012). Two other proteomic studies showed that several
proteins involved in energy metabolism, such as carbonic
anhydrase and aldolase C, were increased in the frontal cortex
(Johnston-Wilson et al., 2000) and anterior cingulate cortex
(Beasley et al., 2006) of depressed patients. These results
are consistent with PET findings of a reduction in cerebral
glucose metabolism in the brains of depressed patients (Baxter
et al., 1989), which was reversed by 6 weeks of treatment
with the SSRI paroxetine (Kennedy et al., 2001). Similarly,
PET studies also revealed that depressed patients had reduced
blood flow and bioenergetic metabolism in the prefrontal
cortex (Drevets et al., 1997; Mayberg et al., 1999; Moretti
et al., 2003), cingulate gyrus, and basal ganglia (Videbech,
2000).

Psychiatric disorders almost always have overlapping
symptoms, which might reflect common mechanisms when
compared against controls. An interesting study addressing this
issue showed that patients with major depression that included
psychosis had more differentially expressed proteins associated
with energy metabolism, whereas patients with depression
without psychosis had changes in proteins associated with cell
growth and maintenance, although 53.7% of the altered proteins
overlapped (Martins-de-Souza et al., 2012). Subtle differences in
proteome fingerprints may become useful biomarkers that could
be used to stratify patients with different symptoms profiles and
to formulate effective personalized treatment plans. Proteomic
studies support the view that mitochondrial dysfunction is one of
many important factors involved in depression, and may identify
novel pathogenic mechanisms of psychiatric disorders.

That alterations in mitochondria bioenergetics pathways
contributed to the pathophysiology of depression also raise
the possibility of developing mitochondrial biomarkers that
can illustrate a better therapeutic approach to the treatment of
depression. However, this field is still undeveloped and additional
studies are needed characterizing specific mitochondrial
dysfunctions in depression in relation to therapeutic response
to antidepressants, or to evaluate the possibility of identifying
mitochondrial drug targets that could be used to develop novel
antidepressant drugs (Klinedinst and Regenold, 2015).

DECREASED ATP PRODUCTION

The production of ATP through OXPHOS is a key method by
which mitochondria provide energy to the cell. Several lines of
research have confirmed that depression is associated with lower
than normal levels of ATP production. For example, brain levels
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of ATP are generally lower in the brains of depressed patients
compared to control subjects (Moretti et al., 2003; Martins-de-
Souza et al., 2012). This may be related to the dampened neuronal
plasticity and impaired hippocampal neurogenesis thought to be
operative in depression (Caruncho et al., 2016), as neurogenesis
is a metabolically demanding process. Other researchers have
found changes in ATP in depression in areas outside the brain.
Gardner et al. (2003) found that mitochondrial ATP production
rates and mitochondrial enzyme ratios in electron transport
chain (ETC) complexes I–IV were significantly decreased in
the muscles of patients with depression compared to controls.
A correlation was found between altered biochemistry and
depression rating scale scores further evidencing the relationship
between mitochondrial dysfunction and psychopathology. In
peripheral blood mononuclear cells, ATP turnover-related
respiration was lowered in depressed patients compared to age-
matched controls, as well as routine and uncoupled respiration
and coupling efficiency (Karabatsiakis et al., 2014). Moreover,
ATP-binding cassette transporters, which utilize the energy of
ATP, are also altered in depressed patients and single nucleotide
polymorphisms in the gene that codes for these transporters
may be indicators of severity of the disorder and patient
responsiveness to antidepressants (Lin et al., 2011).

Decreased ATP production has also been observed in
preclinical animal models of depression. Female rats displaying
anhedonia (i.e., decreased preference for sucrose) after 40 days
of mild stress also had decreased hippocampal NA+, K+-ATPase
activity (Gamaro et al., 2003). Fluoxetine reversed the effects of
stress on enzymatic activity suggesting that NA+, K+-ATPase
activity may be involved in the depression-like phenotype.
In another study, fluoxetine restored sucrose preference, and
normalized ATP synthesis rate and mitochondrial respiratory
control in the raphe nucleus after 18 days of chronic
unpredictable stress (Wen et al., 2014). Another study using
the chronic mild stress paradigm revealed that mice with
decreased sucrose preference and increased immobility in the tail
suspension test (i.e., learned helplessness) also showed damaged
mitochondrial ultrastructure, impaired respiration rates, and
altered membrane potentials in the hippocampus, hypothalamus,
and the cortex (Gong et al., 2011).

OXIDATIVE STRESS

Mitochondria are the primary source of ROS, which under
normal conditions play important roles in cell signaling and
homeostasis. ROS are produced in the OXPHOS pathway;
however, in normal physiological conditions, mitochondria
create protective factors that can neutralize harmful free radicals
(Petschner et al., 2018). For example, there is a mitochondrial
matrix thiol system that has an important role in antioxidant
protection (Murphy, 2012). In the ETC, complexes donate
electrons to oxygen producing radicals like superoxide and
peroxidases, and high levels of such radicals and oxidative
stress cause damage to lipids, enhance DNA breaks, and oxidize
nuclear and mtDNA (Tobe, 2013; Czarny et al., 2015). Lower
levels of ROS also play a role in normal cellular functioning,

such as differentiation of cells, tissue regeneration, redox
biology, and promoting adaptation to environmental changes
(Vakifahmetoglu-Norberg et al., 2017). The production of highly
reactive free radicals is increased when premature leakage of
electrons to oxygen occurs in the ETC, increasing oxidative stress.
Superoxide is a precursor for ROS, and complex I and III are
mainly responsible for its production (Vakifahmetoglu-Norberg
et al., 2017). Oxidative stress could be the cause or consequence of
damage to mitochondria and mtDNA (Xie et al., 2017). Martins-
de-Souza et al. (2012) speculated that a reduction in ATP could be
due to oxidative stress and that the increased levels of subunits of
OXPHOS complexes were compensatory. In fact, ATP reduction
and its relation to oxidative stress have been linked not only to
depression (detailed below), but also to psychotic disorders (see
Chouinard et al., 2017), autism (Rose et al., 2014), anxiety (Kumar
and Chanana, 2017), Alzheimer’s disease (recently reviewed in
Tramutola et al., 2017), and Huntington disease (Quintanilla
et al., 2017).

Several papers have reported links between oxidative stress
and depression. Ben-Shachar and Karry (2008) reported an
increase in oxidative damage and alterations in ETC complex I
in the prefrontal cortex of depressed patients. Other researchers
noted decreased levels of antioxidants and antioxidant enzymes
in depression and related these changes to deficits in cognition
(Anderson, 2018). In an immobilization stress preclinical model
of depression, in which animals were restrained for 6 h a day,
levels of the cellular antioxidant glutathione were reduced by
36.7% after 21 days, while lipid peroxidation increased (Madrigal
et al., 2001). The authors speculated that lipid peroxidation could
cause mitochondrial dysfunction by damaging membranes and
causing excitotoxicity, which could be potentiated by increased
production of reactive molecules (Braughler and Hall, 1989) or
decreased antioxidant levels. In the olfactory bulbectomy model
of depression, glutathione levels were also decreased whereas
ROS superoxide, nitric oxide (NO), and lipid hydroperoxide
levels were increased in mice (Holzmann et al., 2015) and rats
(Almeida et al., 2017).

As previously mentioned, the effect of 21 days of
environmental stress (i.e., restraint) on mitochondrial
dysfunction in rats was investigated (Madrigal et al., 2001).
The authors reported that mitochondrial activity of ETC
complexes I–III were significantly decreased after just 7 days of
restraint stress (6 h per day); however, there was no difference
in complex IV and no stress-induced decreases in oxygen
consumption throughout the 21-day period. They speculated
that mitochondrial dysfunction was a result of overproduction
of NO, as an accumulation of NO metabolites was found in
the brain tissue. Similarly, 40 days of chronic variable stress
decreased sucrose preference as well as inhibited ETC complexes
I, II, and IV in the cerebral cortex and cerebellum of rats (Rezin
et al., 2008b). Interestingly, increased expression of proteins
related to mitochondrial import and transport in the OXPHOS
pathway was also seen in a preclinical mouse model of anxiety,
a disorder that is highly comorbid with depression (Filiou et al.,
2011). Moreover, in this model, the expression of enzymes
involved in catalyzing glycolysis pathway reactions was also
dysregulated.
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The mechanisms by which environmental stress negatively
impacts the brain are still not fully understood. However, there
is evidence that free-radicals such as NO cause rapid damage
to certain cell macromolecules that are involved in the ETC
system, which in turn will decrease production of ATP and
may be implicated in cytotoxic effects in the central nervous
system (Cleeter et al., 1994; Lizasoain et al., 1996). Madrigal et al.
(2001) did not find changes in ATP levels, which provides further
evidence that a threshold of ETC complex dysfunction may have
to be reached before the capability of mitochondria to maintain
homeostasis diminishes (Davey and Clark, 1996).

Antidepressant treatment improves oxidative stress
parameters in patients with depression. For example, a higher
serum total oxidant status and a lower serum total antioxidant
capacity in depressed patients were normalized after 42 days
of antidepressant treatment (Cumurcu et al., 2009). Similar
findings have been reported in animal models of depression.
Venlafaxine increased expression of antioxidant mitochondrial
genes in the mouse brain, which reduced levels of hydrogen
peroxide and peroxynitrite (Goemaere and Knoops, 2012; Tamási
et al., 2014). Furthermore, in the chronic mild stress paradigm,
lamotrigine, aripiprazole, and escitalopram all normalized
glutathione and glutathione peroxidase activity in rat cortical
regions (Eren et al., 2007a). Lipid peroxidation in the cortex and
plasma was increased by chronic mild stress, but also reversed
by the same three treatments. A similar study revealed that
venlafaxine can reverse chronic mild stress-induced decreases in
glutathione peroxidase activity and vitamin C, and increases in
lipid peroxidation and NO in the rat cortex (Eren et al., 2007b).
Moreover, unpredictable stress in mice resulted in increased
open field test exploration along with decreased liver glutathione,
superoxide dismutase, and total antioxidant capability, which
was reversed by the traditional Chinese medicine, Shudihuang,
in a dose-dependent manner (Zhang et al., 2009).

REELIN, OXIDATIVE STRESS,
INFLAMMATION, AND DEPRESSION

A further link between ROS and depression has been suggested
by recent work focused on the extracellular matrix protein reelin.
Reelin has been linked to depression in preclinical models of
depression: A decline in reelin expression in the hippocampal
subgranular zone is associated with the emergence of depression-
like behavior, and heterozygous reeler mice (HRM) with 50%
of the normal levels of reelin are highly susceptible to the
depressogenic effects of stress hormones (Lussier et al., 2011,
2013). Interestingly, a subpopulation of reelin containing cells
also coexpress nNOS, and the percentage of neurons coexpressing
both markers is specifically decreased in the subgranular zone
and molecular layer of the dentate gyrus in HRM (Romay-Tallon
et al., 2010).

As reelin secretion by neurons in the subgranular zone may
be involved in regulating the maturation of adult hippocampal
newborn neurons (Lussier et al., 2009), and as deficits in adult
hippocampal neurogenesis have been proposed to be a key event
underlying the development of a depressive phenotype (detailed

above in section “Hypotheses About the Neurobiological Basis
of Depression”), we recently examined the effects of repeated
CORT injections on coexpression of reelin and nNOS across
hippocampal subregions in brains from HRM and wildtype mice.
We found that repeated CORT (administered at a dose that
induces depression-like behavior in HRM; Lussier et al., 2011)
creates an imbalance between reelin and nNOS expression in
the proliferative subgranular zone of the dentate gyrus, with
CORT inducing a decrease in colocalization of reelin and nNOS
in wildtype mice but a significant increase in colocalization of
these markers in HRM. We interpreted these results as being
indicative of profound excitotoxicity in dentate gyrus neurons
after chronic exposure to stress hormones to a degree that
produces depression-like behavior (Romay-Tallon et al., 2010,
2015).

Nitric oxide and other ROS inhibit mitochondrial 2-
oxoglutarate dehydrogenase giving rise to increased levels of
glutamate, which eventually leads to glutamate excitotoxicity and
cell death (Weidinger et al., 2017). The reelin–nNOS connection
should receive more experimental attention, as a number of
reports indicate that alterations in reelin expression within the
dentate gyrus may result in deficient maturation of newborn
granule neurons and dampened hippocampal plasticity, and may
represent a key event in the pathophysiology of depression
(reviewed in Caruncho et al., 2016).

There is also a key link with inflammation to consider in
the context of these experiments. Many studies support the idea
that inflammatory processes are involved in depression, and in
fact targeting of inflammatory cytokines to reduce depression
symptoms is a very active area of research (recently reviewed by
Shariq et al., 2018). Studies have shown that pro-inflammatory
cytokines alter ETC complexes and complex associated enzymes
(Samavati et al., 2008), and that they activate pro-apoptotic
proteins and the caspase cascade (Bansal and Kuhad, 2016). In
mice, the injection of lipopolysaccharide, which induces strong
immune responses and secretion of pro-inflammatory cytokines,
significantly increased depression-like behavior in the sucrose
preference and forced swim tests, and decreased ATP levels and
mitochondrial membrane potential in the hippocampus (Chen
et al., 2017).

Alterations in several components of the immune system,
and in inflammatory markers, have also been observed in
animals with low or null reelin expression (Green-Johnson
et al., 1995). We have reported that these animals not only
are quite susceptible to the depressogenic effects of repeated
CORT (Lussier et al., 2011), but also show alterations in
the clustering of specific membrane proteins in lymphocytes
(Rivera-Baltanás et al., 2010) which prompted us to investigate
membrane protein clustering in lymphocytes in depression
patients, and to propose that the pattern of clustering of specific
proteins along the plasma membrane of lymphocytes could be
a putative biomarker of depression, and perhaps underlie some
of the inflammatory events observed in depression patients
(Rivera-Baltanas et al., 2012, 2014, 2015). In fact, alterations in
oxidative stress in lymphocytes have been clearly demonstrated
in depression (Szuster-Ciesielska et al., 2008; Czarny et al.,
2018). Following up this line of thought, we have recently
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demonstrated that peripheral injections of the anti-inflammatory
drug etanercept (which is unable to cross the blood–brain–
barrier) not only rescues the depression-like behavior induced
by repeated CORT but also normalizes the neurochemical
phenotype of reelin expressing cells in the hippocampal dentate
gyrus. We speculated that both peripheral and secondary
central actions may be operative in the antidepressant effects of
etanercept injections (Brymer et al., 2018). It seems clear that
additional studies would be required to determine the connection
between reelin, oxidative stress, and inflammation in depression,
not only to determine how these factors may be an important
component of the pathophysiology of depression, but also to
evaluate them as possible targets to develop novel antidepressant
drugs.

APOPTOSIS

Mitochondria have a clear role in cell metabolism, and evidence
suggests that mitochondrial morphology also affects metabolic
enzymes through fusion and fission (Chen et al., 2005). The
formation and morphology of cristae on the inner membrane,
which regulate mitochondrial metabolism, may require fusion
machinery as a loss of such machinery results in decreased
metabolism (McBride et al., 2006). Abnormal cell structure
and function could result in alterations in synaptic signaling
and neural circuits and vice versa (Kaidanovich-Beilin et al.,
2012). Excessive glutamatergic activation of NMDA receptors
was shown to increase ROS levels and alter mitochondrial
membrane polarity, which led to elevated apoptosis rates
in cardiomyocytes, possibly as a result of increased calcium
ion influx (Gao et al., 2007). Mitochondria are present at
synapses and responsive to synaptic stimulation (McBride
et al., 2006). As the hippocampus is highly vulnerable to
the depressogenic effects of chronic stress, it is likely that
hippocampal mitochondria behave abnormally in depressed
patients. For example, the clustering of mitochondria in dendritic
spines in response to neural activity may be altered (Li et al.,
2004). Glucocorticoid receptors (GRs) are also highly prevalent
in the hippocampus. These receptors are activated when stress
hormone levels are high, such as during periods of chronic
stress. GRs coordinate OXPHOS enzyme biosynthesis (Simoes
et al., 2012) and regulate mitochondrial gene transcription such
as cytochrome oxidase 1 and 3, the activity of which correlates
with levels of ATP (Adzic et al., 2013). In the hippocampus,
chronic stress altered the phosphorylation of mitochondrial GRs,
whereas in the prefrontal cortex, chronic stress significantly
increased mitochondrial GR levels (Adzic et al., 2013). In the
gut, stress increased serum CORT levels, which activated GR
recruitment to instigate decreased ETC complex I activity,
hyper-fission, and accumulation of ROS inducing apoptosis
(De et al., 2017). This is the intrinsic pathway of apoptosis,
which is affected by oxidative stress, elevated Ca2+ levels, and
damaged DNA (Green and Kroemer, 1998; Kroemer et al.,
2007).

Mitochondria are also involved in apoptosis through the
extrinsic pathway, in which the death-inducing signaling

complex is formed, leading to activation of caspase-8 and
then downstream caspases that target substrates leading to
programmed cell death (Vakifahmetoglu-Norberg et al., 2017).
Other proteins such as K-Ras or BH3 interacting domain death
agonist can also induce cell death when activated by caspases by
translocating to mitochondria, where they trigger the release of
the executioner caspases (Bivona et al., 2006; Bansal and Kuhad,
2016).

It is important to note that the effect of stress on mitochondrial
function may depend on the nature of the stressor or period of
chronicity. Although chronic stress and high levels of circulating
stress hormones are a clear risk factor for depression (Gibbons
and McHugh, 1962; Holsboer, 2001; Parker et al., 2003), low levels
of stress hormones can be beneficial. For example, the effects of
the stress hormone CORT on depression-like behavior in rodent
models depend on the dose and time period of administration:
higher doses and longer periods of administration produce robust
increases in depression-like behavior but low doses or high
doses given for short periods do not (Johnson et al., 2006;
Lussier et al., 2013). This is consistent with the effects of stress
hormones on mitochondria. Glucocorticoids can translocate to
mitochondria, where they inhibit the release of cytochrome
c and decrease apoptosis (Du et al., 2009). However, this
is dependent on the level of glucocorticoids present in the
tissue. Du et al. (2009) revealed that low doses of CORT
were neuroprotective through regulation of mitochondria, but
high doses were neurotoxic. Similarly, inhibiting mitochondrial
protein synthesis completely impairs neuronal differentiation,
but inhibiting ATP synthetase alone does not affect neurogenesis
(Vayssiere et al., 1992). It would be of interest to map the dose-
dependent effects of glucocorticoids on markers of mitochondrial
function along with depression-like behavior to further confirm
these relationships.

THE EFFECT OF ANTIDEPRESSANTS ON
MITOCHONDRIA

There has been quite a bit of work done to try to understand
the effect of antidepressant drugs on mitochondrial function.
Most antidepressants work by increasing synaptic levels of
serotonin and/or norepinephrine, and adverse side effects are
commonly reported. Much of the research done to examine
links between antidepressant drugs and mitochondrial function
have used the SSRI fluoxetine, which may either inhibit or
trigger mitochondrial apoptosis and alter activity of the ETC,
depending on the cell type (de Oliveira, 2016). In the rat
liver, fluoxetine administered in vitro inhibited state 3 of
mitochondrial respiration for α-ketoglutarate and succinate
oxidation, stimulated state 4 for succinate, and decreased the
respiratory control ratio for both oxidizable substrates (Souza
et al., 1994). The same effects were found in a later study
on the rat brain, with fluoxetine decreasing the rate of ATP
synthesis (Curti et al., 1999), and a study on the pig brain,
showing that fluoxetine can inhibit mitochondrial function
(Hroudová and Fišar, 2012). These results indicate that high
doses of fluoxetine have negative effects on mitochondria.
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Fluoxetine crosses mitochondrial membranes with ease, and
it is possible that fluoxetine could interfere with membrane-
bound proteins causing pro-apoptotic events (de Oliveira,
2016).

In vivo studies reveal a slightly more complex scenario, in
that fluoxetine has both beneficial and detrimental effects on
mitochondria when given systemically. After a single injection
of fluoxetine (25 mg/kg), activity of the Krebs cycle enzyme
citrate synthase was increased in the striatum, but not in the
prefrontal cortex or hippocampus, and the striatal increase was
no longer evident after 28 days of treatment (Agostinho et al.,
2011a). Fluoxetine at the same dose also increased activity of
ETC complex I in the hippocampus after one injection, but
not in the prefrontal cortex or striatum (Agostinho et al.,
2011b). However, after 28 days of daily injections, complex IV
activity was decreased in the hippocampus. In another study,
21 days of low dose fluoxetine injections (5 mg/kg) increased
expression of cytochrome oxidase 1 and cytochrome oxidase 3
mRNA in the prefrontal cortex in female rats, but not male
rats, and decreased cytochrome oxidase 1 and cytochrome
oxidase 3 mRNA in the hippocampus of male rats but not
female rats (Adzic et al., 2013). These results suggest sex and
region specific effects of systemic fluoxetine on mitochondrial
function.

There has been some work done to examine the effect of
other antidepressants. For example, chronic treatment with the
tricyclic antidepressant imipramine as well as electroconvulsive
shocks increased levels of cytochrome b mRNA in the rat
cortex but not in the hippocampus, cerebellum or liver (Huang
et al., 1997). Cytochrome b mRNA translates a protein that
is involved in ETC complex III functioning. In addition,
the SNRI venlafaxine actually had detrimental effects on
complex IV of the ETC, although it increased expression of
anti-apoptotic and antioxidant mitochondrial genes (Tamási
et al., 2014). Finally, fluoxetine and desipramine enhanced
cytochrome oxidase and glutamate dehydrogenase in presynaptic
mitochondria located in the rat hippocampus (Villa et al.,
2017). These data highlight the importance of antidepressants
at a subcellular level and suggest that mitochondrial energy
metabolism could be a mechanism of antidepressant drug
action.

GENDER DIFFERENCES IN
DEPRESSION AND MITOCHONDRIA

Women are more than twice as likely to suffer from depression
than men, but it is not yet clear why this occurs and whether
or not it has a biological basis. There is evidence that gender
differences might arise due to decreased levels of circulating
estrogens (Bloch et al., 2003), which is reinforced by observations
that ovariectomy increases depression-like behavior in mice
subjected to a chronic unpredictable stress paradigm (Lagunas
et al., 2010). Furthermore, administering estradiol alleviates
depression-like symptoms in ovariectomized rats (Rachman
et al., 1998) and may accelerate antidepressant effects in humans
(Rasgon et al., 2007). The evidence linking mitochondria to

estradiol and depression is sparse, but emerging. Some studies
have indicated a protective role of estradiol in mitochondria,
showing that it can inhibit the passage of ROS into mitochondria
as well as preventing mitochondrial collapse and increasing
the rate of ATP synthesis (Wang et al., 2003; Shimamoto
and Rappeneau, 2017). Mitochondria are known to express
estrogen and GRs in lung tissue, suggesting that mitochondria
are responsive to fluctuating levels of stress hormones and
estradiol (Walf and Frye, 2006). It seems that mitochondrial
estrogen and GRs in lung tissue are involved in the biosynthesis
of OXPHOS enzymes, which will affect other mitochondrial
functions such as apoptosis and ROS production (Simoes et al.,
2012). It would be quite interesting to follow these studies with
an investigation of brain mitochondria and estrogen receptors
to determine whether sex steroid hormones in the brain might
be involved in the gender differences seen in the prevalence of
depression.

CONCLUSION

The specific biological mechanisms underlying major depression
have yet to be elucidated. This review highlights the potential
importance of mitochondrial function in depression. This
is an area that has received relatively little experimental
attention, but the data that have been published to date are
promising and should be pursued. Although one must be
cautious in extrapolating findings from preclinical animal
models to the human condition, there is evidence that chronic
stress-induced inhibition of ETC complexes in the inner
membrane of mitochondria is a contributing factor in the
pathophysiology of depression. Dysfunctional mitochondria
decrease the pool of available ATP, which could have detrimental
effects on signal transduction pathways, dampening activity
in neuronal circuits, and interfering with mitochondrial
fusion and fission. This negative cascade would ultimately
increase oxidative stress, inflammatory responses, and pro-
apoptotic events, some of which are known to be involved in
the pathogenesis of depression. Viewed this way, it seems
logical that reversing the early stages of mitochondrial
dysfunction could provide a novel target for therapeutic
intervention.
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