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Extreme events reveal an alimentary limit on sustained
maximal human energy expenditure
Caitlin Thurber1, Lara R. Dugas2, Cara Ocobock3, Bryce Carlson4,
John R. Speakman5,6*, Herman Pontzer1,7,8*

The limits on maximum sustained energy expenditure are unclear but are of interest because they constrain
reproduction, thermoregulation, and physical activity. Here, we show that sustained expenditure in humans,
measured as maximum sustainedmetabolic scope (SusMS), is a function of event duration. We compiled mea-
surements of total energy expenditure (TEE) and basal metabolic rate (BMR) from human endurance events
and added new data from adults running ~250 km/week for 20 weeks in a transcontinental race. For events
lasting 0.5 to 250+ days, SusMS decreases curvilinearly with event duration, plateauing below 3× BMR. This
relationship differs from that of shorter events (e.g., marathons). Incorporating data from overfeeding studies, we
find evidence for an alimentary energy supply limit in humans of ~2.5× BMR; greater expenditure requires
drawing down the body’s energy stores. Transcontinental race data suggest that humans can partially reduce
TEE during long events to extend endurance.
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INTRODUCTION
Considerable interest has focused on the physiological limits on energy
expenditure, which is often expressed as a multiple of basal metabolic
rate (BMR), also called “metabolic scope,” to account for differences in
body size (1–13). Seminal studies have suggested that maximum sustained
metabolic scope (SusMS) is capped at ~4× to 5× BMR in humans and
other endotherms (1–3), approaching ~7× BMR for some rodents un-
der cold conditions (4, 13). The effect of event duration on SusMS has
been hypothesized (3) but has never been quantified and has often been
ignored. However, analogous to the relationship for short-duration
events between maximum running speed and race distance (14), evi-
dence suggests that SusMS may decrease over longer time periods.
The estimated SusMS of ~4× to 5× BMR [often cited as a metabolic
ceiling for humans (2–4)] came from the 23-day Tour de France, but
athletes in 11-hour triathlons and 25-hour ultramarathons exhibit
metabolic scopes of 9.4× and 8.5× BMR, respectively (15), and a meta-
bolic scope of 6.6× BMR was measured over a 10-day period of arctic
trekking (16). Complicating the relationship between event duration
and SusMS, individuals respond to sustained increases in physical ac-
tivity by reducing total energy expenditure (TEE) (17, 18). The limits
and timing of this metabolic compensation are unclear, particularly un-
der extreme workloads.

In this study, we quantified the relationship between maximum
measured metabolic scope and duration of the activity using pub-
lished measures of human metabolic scope for endurance activities
spanning 0.5 to 95 days (e.g., triathlons, Tour de France, and arctic
trekking) and measures presented here for the first time for runners
in the 140-day transcontinental Race Across the USA (RAUSA) (see
Materials and Methods).
RESULTS
Combining RAUSA data with published measures of metabolic scope
in other long-duration, energy-intensive activities (e.g., pregnancy;
table S1), we found that SusMS is not a static value but instead follows
a strong (r2 = 0.98, n = 11, P < 0.001) negative logarithmic relationship
with event duration (Fig. 1). Limiting the analysis to competitions,
where athletes are highly motivated to maximize SusMS, produces
a similar curve, as does including estimated (rather than directly
measured) metabolic scopes for world-record ultramarathon perform-
ances (Fig. 1 and tables S1 and S2).We can find no instance ofmeasured
or reliably estimated human metabolic scopes that exceed this curve.
The relationship between SusMS and duration differs from the rela-
tionship for much shorter events (e.g., half-marathon and full mara-
thon; Fig. 1 and table S2), suggesting different limits on expenditure
for short (<0.5 days) versus long events.

Metabolic data fromRAUSAathletes provide a detailed examination
of energy expenditure over the course of an extreme endurance event.
RAUSA athletes ran approximately one marathon (42.2 km) per day,
6 days per week, for 14 to 20 weeks from the Pacific (Huntington
Beach, CA) to the Atlantic coast (Washington, DC), making it the
longest event to date with associated metabolic measures. Using the
doubly labeled water (DLW)method, we measured TEE in six RAUSA
athletes (table S2) immediately before the start of the race (Pre-Race),
during the first week of the race (Week 1), and during the final week
of the race. Resting metabolic rate (RMR) was measured in three of
the racers at Week 1 and Week 20 via respirometry. Week 1 TEE
measured during the first five consecutive days of marathon running
(6202 ± 881 kcal/day) was elevated from Pre-Race, differing by only 2%
from the increase predicted from running workload (table S2, Fig. 2,
and fig. S1). For the three subjects with RMR measurements, mean
metabolic scope (i.e., TEE/RMR) increased from 1.76 (range, 1.59 to
1.92) Pre-Race to 3.76 (range, 3.08 to 4.13) during Week 1. At Week
20, their TEE decreased by 1224 kcal/day (range, 791 to 1606 kcal/day)
for these three subjects, ~20% down from Week 1 values (P = 0.02,
paired t test) to 4906 ± 864 kcal/day. RMR for these three subjects
was essentially unchanged (P = 0.18, paired t test), trending ~6%
greater (table S1 and Fig. 2), resulting in a decreased metabolic scope
(mean, 2.81; range, 2.74 to 2.89). Metabolic scope averaged across
the entire 140-day transcontinental run was 3.11 (range, 2.86 to 3.28;
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fig. S2). The two other subjects who finished the transcontinental run
on an accelerated schedule (100 days) had slightly higher estimated av-
erage metabolic scopes (3.32 and 3.56), consistent with the shorter du-
ration of their run (table S2 and fig. S2). Water throughput for the five
race finisherswas high in bothWeek 1 (8.1 ± 2.2 liters/day) and the final
week (7.7 ± 1.6 liters/day; P = 0.32, paired one-tailed t test), underscor-
ing the importance ofwater balance and fluid availability inmaintaining
performance (15).
Thurber et al., Sci. Adv. 2019;5 : eaaw0341 5 June 2019
The reduction in TEE among RAUSA subjects can be partly at-
tributed to marginally reduced body mass and daily mileage (table
S3). Still, even after accounting for these changes, Week 20 TEE was
596 kcal/day lower (range, 400 to 923 kcal/day) than expected (see
Materials and Methods, table S2, and Fig. 2). The mechanisms
underlying this metabolic compensation are unclear but likely include
reduction in nonexercise activity and reduction of physiological activ-
ity in other organ systems (17, 18). Changes in running cost could also
A                                                    B                                              C

Events <0.1 days  
SusMS = −1.67 ± 0.04 log10Days + 13.75 ± 0.08  

df = 11, adj.   2 = 0.99,     < 0.0001  

Events >0.5 days  
SusMS = −2.73 ± 0.14 log10Days + 8.78 ± 0.23 
df = 9, adj.   2 = 0.97,     < 0.0001 

Cycling 
Arctic trekking 
Race Across the USA 
Pregnancy and lactation 

Fig. 1. Metabolic scope and duration. (A) Blue circles and trend line: Short events (<0.1 days; 800 m to marathon). Red circles: Events 0.5 to 95 days. Gray open circles:
Estimates for ultramarathon world records and other well-documented endurance events. Purple cross: Other high metabolic scope measurements. Red trend line with
95% confidence interval (CI): SusMS versus duration limit (analysis A in table S2). Data: table S1. (B) SusMS versus duration relationship [unlogged and redrawn from (A);
analysis A in table S2] flattens out at ~2.5× BMR. Cumulative average metabolic scope (see Materials and Methods) is shown for elite cyclists over a touring season, arctic
trekking, RAUSA runners, and pregnancy and lactation. (C) Habitual metabolic scope (“physical activity level”) for n = 130 cohorts from a diverse global sample (29) cluster
below 2.5× BMR (red line).
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Fig. 2. Observed and predicted energy expenditures for RAUSA athletes. (A) Observed versus predicted TEE and its components. TEF, thermal effect of food; RUN,
running expenditure. Observed columns depict means (±SD) for all subjects. (B) Differences from predicted TEE for subjects at Week 1 and the final week (see Materials
and Methods and Eqs. 4 and 5).
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contribute, but evidence for training-induced improvement in running
efficiency is mixed and the effect, when present, is generally modest,
~3% savings in energy per kilometer (19). Whatever the mechanisms,
the reduction in TEE and metabolic scope may have been crucial in
enabling them to complete the run; the relationship between SusMS
and duration (Fig. 1) suggests that these runners’ Week 1 metabolic
scope would have only been sustainable for ~70 days. The magnitude
ofmetabolic response in RAUSA athletes (~600 kcal/day, ~20%TEE) is
similar to the degree of adaptation reconstructed for themost physically
active subjects in a recent cross-sectional study (17) and may reflect
humans’ maximal capacity for metabolic compensation.
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DISCUSSION
The nature of the events that fit the apparent ceiling in SusMS and event
duration (Fig. 1) provides additional insight into the mechanisms that
limit long-term sustained expenditure. A broad range of activities, in-
volving different muscle groups and organ systems (e.g., running,
swimming, cycling, trekking, and pregnancy), all fit the SusMS versus
duration curve. Active muscle volume and maximal capacity to uptake
oxygen and nutrients and expend energy vary substantially among
sports (20), and the reproductive organs likely have their own different
maximal capacities. The diversity of events adhering to a common
metabolic ceiling (Fig. 1) makes it unlikely that limits to energy expend-
iture in the peripheral tissues constrain prolonged expenditure in
humans. Similarly, maximal metabolic scopes measured under cold
conditions (i.e., arctic trekking) were no different with respect to dura-
tion than those underwarmconditions (Fig. 1 and table S1), challenging
thermoregulatory explanations for SusMS.

Limits to energy expenditure could emerge from limits to oxygen
and nutrient distribution. The heart, lungs, and vascular system have
the capacity to bring in oxygen and distribute oxygen and nutrients
at more than 10× BMR for several hours (Fig. 1). Nonetheless, humans
and other animals may be sensitive to the energy required for dis-
Thurber et al., Sci. Adv. 2019;5 : eaaw0341 5 June 2019
tribution. West and colleagues (21) have argued that, across species,
BMR reflects selection to minimize energy expenditure on oxygen
and nutrient distribution via the vasculature. It is unclear whether these
systems fatigue with prolonged expenditures above the minimal
distribution energy, but additional research is warranted. Similarly,
the potential for long-term fatigue in the kidneys and other organs
involved in waste excretion deserves future investigation.

Limits to energy intake would implicate the alimentary system (e.g.,
digestive tract and liver) and would predict some maximal rate of
energy intake; energy demand exceeding this maximum rate would
require drawing on energy reserves and would not be sustainable in-
definitely. We tested for an energy intake limit by examining two
paradigms that maximally stress the alimentary system: endurance
studies with ad libitum food supply (n = 23, including those in Fig. 1)
and overfeeding studies (n = 6; table S1). In overfeeding studies,
subjects’ energy consumption is much greater than TEE for several
days, while physical activity is kept very low.Overfeeding protocols pro-
vide a measure of maximum energy uptake by the alimentary system
under conditions of food energy surplus.

For each endurance and overfeeding study, we calculated energy
intake per day by taking the measured metabolic scope and either sub-
tracting the energy derived fromweight loss or adding energy converted
to weight gain. Precise conversion of weight change to energy requires
detailed information on proportions of fat and lean mass gained or lost
(22, 23) that is unavailable for many studies. As a first approximation,
we assumed an equivalence of 1 kg/day to 5× BMR (approximately
7650 kcal/kg) following observations from weight loss studies (23).
We found that sustained energy intake was similar across studies
(2.36 ± 0.59× BMR) and independent of event duration (Fig. 3B),
consistent with an alimentary mechanism limiting SusMS. Varying
the kilogram per day–to–BMR ratio by ±20% only changes mean es-
timated sustained energy intake by 2% (fig. S3). Furthermore, we
found a strong relationship between energy balance and metabolic
scope for endurance and overfeeding studies (Fig. 3A and table S1).
 on June 10, 2019
Fig. 3. Maximal energy intake. (A) Estimated energy intake, calculated from metabolic scope and weight change, is consistent across overfeeding (red inverted triangles),
endurance (blue triangles), and pregnancy (green inverted triangle) studies and is unrelated to event duration (P= 0.51, r2 = 0.01, least squares regression; dashed line). (B)Weight
change (in kg/day) versus metabolic scope (×BMR) for endurance (red squares), pregnancy (green square), and overfeeding (blue squares) studies (table S1). Reducedmajor axis
regression (red line) and 95% CIs (gray lines) are indicated.
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Reducedmajor axis regression gives a 95% confidence interval (CI) for
energy balance of 2.20× to 2.35× BMR and a slope of −0.17 (95% CI,
−0.13 to −0.22).

The agreement of weight change data from overfeeding studies
with those from endurance studies (Fig. 3) suggests that a common
alimentary limit to energy uptake constrains a broad range of activ-
ity. These results also strengthen the case for an alimentary limit to
SusMS because the effects of energy expenditure or distribution con-
straints would not be expected to persist at low (<2.0× BMR) expen-
ditures and activity levels. Conversely, the relationship betweenweight
change and expenditure (Fig. 3) indicates that SusMS above ~2.5× BMR
generally rely on drawing down energy stores to supplement alimentary
supply. The increment of expenditure above 2.5× BMR cannot be met
with additional intake and therefore cannot be sustained indefinitely.
Notably, metabolic scope during human pregnancy (during which
weight gain is imperative) and lactation peaks at ~2.2× BMR, which
might constrain gestation length and fetal growth (24, 25).

An alimentary limit of ~2.5× BMR is consistent with the SusMS
versus activity duration curve, which flattens out below ~3× BMR
(Fig. 1B), but raises directions for further research. First, in at least
two studies (Tour de France cyclists and elite Nordic skiers; table S1),
subjects maintained metabolic scopes of 3× to 5× BMR without sub-
stantial weight loss.While neither group exceeded the apparent SusMS
ceiling (Fig. 1A), it is unclear whether their above-average energy
intake reflects special nutritional strategies (e.g., infusing glucose in-
travenously) or individual biological variation. Second, the signaling
mechanisms linking energy imbalance to the body’s central regulation
of activity, and that ultimately prevent humans from exceeding the
observed SusMS versus duration curve, remain unknown. Measure-
ments of energy imbalance versus metabolic scope (Fig. 3B) support
the hypothesis that SusMS is constrained by the alimentary system, but
other systems of energy consumption and distribution warrant further
investigation. As with the limits to VO2max (26), we can expect the var-
ious organ systems that constrain prolonged SusMS to converge on a
common limit (symmorphosis), making it difficult to parse their indi-
vidual contributions.

The lack of a cold temperature effect is unexpected, given the strong
evidence for heat dissipation limits in other mammals (5, 13). The ab-
sence of a thermoregulatory limit in this sample may be because endur-
ance sporting events are not typically staged at high temperatures where
heat dissipation might limit expenditure, reduce performance, and in-
crease health risks. In ultramarathons staged under hot conditions (e.g.,
BadwaterUltra), the limits of heat dissipation and the risk of acute heat-
related injury and dehydration may impose a lower limit on energy ex-
penditure than is evident in this sample (5, 15). Humans may also have
physiological adaptations that make us particularly robust to thermore-
gulatory constraints and vulnerable to alimentary constraints. First,
humans and other primates are hypometabolic, with TEE ~50% re-
duced compared to nonprimate eutherian mammals (27). Reduced ha-
bitual expenditure decreases heat load and may have also selected for
reduced alimentary capacity. Second, humans have evolved a remark-
able capacity to dissipate heat through sweating with effectively hairless
skin (28). Thus, undermild or temperate conditions, humansmay reach
the limits of energy supply machinery well before the limits of heat dis-
sipation. However, under hot conditions or when water supply is
limited, the reverse may be the case and heat dissipation may become
the primary constraint. Future work may aim to define the conditions
(and species) in which SusMS is limited by alimentary factors versus
other factors such as heat dissipation.
Thurber et al., Sci. Adv. 2019;5 : eaaw0341 5 June 2019
Whatever the physiological mechanism, the strong relationship be-
tween SusMS and duration reveals a common underlying framework
uniting the full range of protracted endurance endeavors among humans,
fromexploration (16) to sport (2) and reproduction (24,25). The relation-
ship between SusMS and duration flattens out at ~2.5× BMR (Fig. 1B),
suggesting ametabolic ceiling for habitual metabolic scope (often termed
“physical activity level”) in humans. Prolonged expenditure above this
metabolic ceiling (~2.5× BMR) requires consuming energy reserves
and is not sustainable indefinitely. Consistent with this hypothesis,
humans around the globe display remarkably similar metabolic scopes
of ≤2× BMR during daily life, regardless of differences in activity and
lifestyle (Fig. 1C) (17, 18, 29).

Humans have evolved greater endurance capabilities than other
apes, which has typically been ascribed to selection for increased
physical activity, particularly long-distance running (14). The com-
mon metabolic limit shared among disparate physiological tasks re-
vealed here (Fig. 1) suggests that selection for increased SusMS in
one domain (e.g., running) would raise the metabolic ceiling for
others (e.g., pregnancy). Humans’ greater TEE relative to other apes
fuels a range of evolutionarily derived, energetically costly traits (30),
making it unclear which elements of the human adaptive suite were
the primary targets of selection for greater metabolic capacity. The
evolution of alimentary mechanisms limiting energy supply in hu-
mans warrants further investigation, and it is notable that the gross
morphology of the gastrointestinal tract and the genes involved in
liver function are evolutionarily derived in humans compared to
apes (31, 32). Other mammalian lineages appear to operate under
different, non-alimentary constraints to SusMS (4, 5, 13). Together,
the potential for variation among species in the mechanisms govern-
ing SusMS and the unified relationship between SusMS and duration
(Fig. 1) suggest a previously unappreciated diversity in metabolic
evolution and an unexpected physiological linkage among essential
life tasks.
MATERIALS AND METHODS
Metabolic scope versus duration
We examined metabolic scope data from a recent review (33), adding
other measures of SusMS from racing, trekking, farming, and pregnan-
cy (table S1). For the determination of the SusMS versus duration curve
(Fig. 1A), we first limited our analyses to studies in which TEE was
measured through either DLW (34) or energy balance. For trekking
and cycling subjects, we estimated BMR from weight, age, and (if avail-
able) height (35) to calculate metabolic scope. TEE was measured over
three different time periods in (16), and those three measures (SusMS
and duration) were included separately in tables S1 and S2 (analysis A).
Pregnancy value is the maximum ratio of (TEE)/(pre-pregnancy BMR)
in a review of pregnancy costs [from table 6 in (24)]. A subset of these
data provides an apparent ceiling of metabolic scope versus ln duration
(red circles and trend line in Fig. 1A).We searched PubMed andGoogle
Scholar formeasurements of TEE ormetabolic scope that fall above this
ceiling but were unable to find any that exceed the trend line in Fig. 1A.
Other high metabolic scope measurements and durations are shown in
Fig. 1A (purple crosses).

To determine whether any well-documented world records for
ultramarathon events might represent metabolic scopes that exceed
the apparentmetabolic ceiling for SusMSversus duration,we examined
records for events 0.5 days from an online compendium (https://en.
wikipedia.org/wiki/Ultramarathon) and a recent record set for the
4 of 8
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Appalachian Trail (http://running.competitor.com/2016/09/news/
meltzer-nearing-finish-appalachian-trail-record-attempt_155618).
For ultramarathon records, we calculated mean running speed [i.e.,
(race distance/time) from] and converted this to estimatedmetabolic
scope using the following equation:

Metabolic scope ¼ �0:154 speed2 þ 3:615 speed ð1Þ

This relationship is derived by combining the equations for BMR
and the rate of energy expenditure versus running speed in (14). For
the Appalachian Trail record, we estimated metabolic scope from re-
ported estimates of energy intake per day. For a case study following a
subject completing 33 Ironman triathlons in 33 days (36), we esti-
mated mean daily metabolic scope as 12 hours per day at triathlon
metabolic scope (9.4; see table S1), 8 hours per day sleeping (metabolic
scope = 1.0), and the remainder at a metabolic scope of 1.5. As dis-
cussed in the text and shown in table S2, inclusion of these estimates
of metabolic scope does not markedly affect the relationship between
SusMS and duration (Fig. 1A).

For comparison with shorter events, we examined world-record
speeds and durations for foot races from 800 m to marathon distances
reported in (14). Estimated metabolic scopes were calculated from
running speed using Eq. 1 as for ultramarathon records.

Reconstructing cumulative average SusMS
Cumulative average SusMS for arctic trekking, elite competitive cyclists,
pregnancy and lactation, and RAUSA runners (Fig. 1B) was recon-
structed for every nth day of an event as a cumulative average daily
metabolic scope, ∑ni¼1metabolic scopei

� �
=n, where (metabolic scopei)

is the metabolic scope for each day of the event and n is the elapsed
event duration. Daily metabolic scopes were calculated as follows:

1) Arctic trekking: Stroud and colleagues (16) reported mean meta-
bolic scope for days 1 to 10, 11 to 20, 21 to 30, 41 to 50, and 50 to 95.
Daily metabolic scopes were reconstructed from these records, setting
daily metabolic scope to the mean value for each period.

2) Cyclists: We considered a cyclist competing in the grand tours
(Giro d’Italia, Tour de France, and Vuelta a España) following the typ-
ical calendar schedule of 23 days competing (Giro d’Italia), 34 days off,
23 days competing (Tour de France), 28 days off, 22 days competing
(Vuelta a España). For competition days, metabolic scope was set at
4.9 following mean measured expenditures from the Tour de France
(2). For days off, we assumed a daily metabolic scope of 2.0, which is
typical of elite athletes during tapering periods before a race (33).

3) Pregnancy and lactation: We used reported metabolic scopes
measured at weeks 6, 24, 30, and 36 of pregnancy and during the first
3months of lactation using the highest reported values from a review of
pregnancy and lactation costs (24). Daily metabolic scope was set to the
mean value for each period.

4) RAUSA runners: For runners R1, R2, R3, and R6, we recon-
structed daily metabolic scope, assuming that measured metabolic
scope in Week 1 persisted until day 30 and then decreased steadily
(~1% per day) to achieve final week values at day 60. Final week values
formetabolic scopewere assumed to persist fromday 60 until the end of
the race (day 100 or 140). For R5, who followed an accelerated schedule
and increasedmileage andTEE at the end of the event, we assumed that
Week 1metabolic scope persisted until day 80 and that final weekmeta-
bolic scope persisted fromday 81 to day 100.Note that BMRand, hence,
metabolic scope were estimated for R2 and R5 (fig. S2).
Thurber et al., Sci. Adv. 2019;5 : eaaw0341 5 June 2019
RAUSA: Subjects
Wemeasured TEE (in kcal/day) in six adult athletes (fivemales, ages 34
to 73 years; one female, age 32 years), participating in the RAUSA
transcontinental marathon event. This race covered 4957 km during
20weeks of running,with subjects running approximately onemarathon
(42 km) per day, 6 days perweek from16 January 2015 to 2 June 2015. A
written explanation of the experimental protocol and associated risks
was provided to all subjects, and their written informed consent was ob-
tained before participation in the study. Permission was obtained from
the organizers of the RAUSA event, and Institutional Review Boards
at Hunter College and Purdue University approved the study (IRB
reference no. 398749-4).

Of the six subjects, only three completed the planned racecourse on
the original schedule. One subject (RS4, female, age 32 years) dropped
out of the race after 8 weeks because of running-related injuries. Two
subjects decided to disassociate from the RAUSA event at week 4 and
continue running their own route across the country, covering a
greater daily and total distance. Of these two subjects, one (RS5, male,
age 36 years) continued to run, and the other (RS2, male, age 42 years)
walked while carrying a backpack. These subjects completed the
transcontinental course ahead of the RAUSA team, and we therefore
measured their final expenditures at Week 14 after the start of the
race. For each subject, the daily running distances were recorded using
wearable GPS. Daily elevation gain or loss was recorded using online
course maps (e.g., www.mapmyrun.com/routes/view/389064072).

RAUSA: TEE
TEE was measured using the DLWmethod (34) during three periods
for each subject: (i) Pre-Race [5 days before the start of RAUSA (10 to
15 January 2015)]: Subjects were preparing for RAUSA during this
period but did not refrain from running, and daily running distance
was 4.0 km (see table S3). (ii)Week 1: First 5 days of race running (16 to
20 January 2017). (iii) Final [last 12 days of the transcontinental run,
eitherWeek 14 (RS2 andRS5; 17April 2015 to 5May 2015) orWeek 20
(RS1, RS3, and RS6; 24 May 2015 to 2 June 2015)]: Subjects ingested
1.2 g of DLW per kilogram of body mass, the dose material con-
taining ~6% 2H2O and ~10%H2

18O (Sigma-Aldrich). After consum-
ing the dose, the dose container was rinsed twice with bottled water
that was consumed to ensure total dose ingestion. A urine sample
was collected 5 min before dosing to establish baseline isotope enrich-
ment, and post-dose urine samples were collected to measure isotope
elimination rates. Subjects were provided with single-use collection
cups, transfer pipettes, and 4-ml screw cap vials for collecting their
samples. All samples were kept frozen or stored on frozen cold
packs during transport until collected by a researcher and brought
to the Human Evolution & Energetics Lab at Hunter College in
New York. Isotope enrichment was measured using cavity ring-
down spectrometry (Picarro). All samples were either carbon-filtered
or ultrafiltered by centrifuge using Vivaspin tubes (Vivaproducts) at
Hunter College. Isotope enrichment analysis was performed using a
Picarro Cavity Ring-Down spectrometer at the Pontzer Lab at Hunter
College, NY, USA.

The first dose was administered 6 days before the start of the race
and was used to calculate Pre-Race and Week 1 TEE as follows. Urine
samples were collected daily for the 5 days before the race and the
first 5 days of the race. For both Pre-Race and Week 1 calculations,
dilution spaces for 2H and 18O (ND and NO, respectively) were calcu-
lated via the slope-intercept method using the least squares regressions
of lnd versus time over the first 5 days (Pre-Race) of enrichment values
5 of 8
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(fig. S1 and table S1). This regressionwas also used to calculate depletion
rates (lnd day−1) for 2H and 18O (kD and kO, respectively) for the Pre-
Race period. A separate regression was used to calculate depletion rates
for the Week 1 samples (fig. S1 and table S3). Note that this approach
assumes that the dilution spaces did not change appreciably from Pre-
Race to Week l. This assumption is consistent with relatively short du-
ration (~10 days) and the observed stability in body weight from the
start of Pre-Race to the end of Week 1 (table S1).

A second dose of DLW was administered 2 weeks before the end
of the race (Week 14 or Week 20). A Week 20 baseline sample was
collected and used for analysis to account for changes in background
isotope enrichment betweenWeek 1 andWeek 20. Furthermore, given
the high rates of water throughput for these subjects (table S3), therewas
more than sufficient time for all of Week 1 dose to be flushed from the
body before the second measurement. Three post-dose urine samples
were obtained, evenly spaced over a 12-day period. Dilution spaces
and depletion rates were calculated from the least squares regression
of lnd versus time as described above.

The rate of CO2 production (in mol day−1) was calculated using
equation 6.6 in (34)

rCO2 ¼ 0:455 TBW ð1:007 kO–1:041 kDÞ ð2Þ

where total body water, TBW = (NO/1.007 + ND/1.041)/2. TEE was
thencalculated fromrCO2using themodifiedWeir equation, kcal/day=
22.4 rCO2 (1.1 + 3.9/FQ), where the food quotient, FQ, was assumed
to be 0.85. We note that, while diets were not closely monitored
during the race, foods consumed did not change greatly over the
course of the event. Daily water throughput (in liters/day) was cal-
culated following equation 6.8 in (24) as rH2O = 0.01802ND kD/0.99,
assuming H2O of 0.01802 liters/mol and a fractionation correction
of 0.99.

RAUSA: Respirometry, bioelectrical impedance, and
body weight
Respirometry was used to measure RMR for three subjects (RS1, RS3,
and RS6) using the Cosmed (Italy) Fitmate Pro (37), during 20-min
trials in Week 1 and Week 20. The other subjects chose not to partic-
ipate in RMR measurement. We consider these measures of RMR,
rather than BMR, becausewhile subjects were rested, fasted, and supine,
we were unable to ensure the strict control of environmental conditions
needed for true BMR measurement (35). For example, measures were
taken in a tent outdoors (ambient temperatures were in the thermoneu-
tral zone), and the subject did not refrain from physical activity for
24 hours before measurement. RMR trials were performed on subjects
early in themorning (~06:00) after fasting overnight and at least 30min
of resting while in a supine position.

Bioelectrical impedance was used to measure fat-free mass (FFM)
with a single-frequency (50 kHz) analyzer (model BIA 101Q, RJL
Systems, Clinton Township, MI) for the three RAUSA subjects in
January and May. This method was not available for RS2 and RS5,
so their FFM was estimated using TBW data obtained from DLW
and using a hydration constant of 0.732. The inability to account for
fluctuations in body hydration due to the extreme physical activity of
the athletes made bioelectrical impedance the preferred method of
measuring FFMwhen possible. Note that the main effect of this prefer-
ence is on calculations of predicted TEE in the final week because
changes in FFM were used to calculate predicted final week TEE (see
below). As discussed below, using theDLWmeasures of TBWandFFM
Thurber et al., Sci. Adv. 2019;5 : eaaw0341 5 June 2019
does not change the results: ObservedTEE in the final weekwas still 165
to 622 kcal/day less than predicted.

Each subject’s body weight was closely monitored and recorded
throughout the study using the Tanita BC-558 Ironman Segmental
Body Composition Monitor (Tanita Corporation, Arlington Heights,
IL) on the athletic setting. RAUSA subjects were weighed daily.
Subjects RS2 and RS5 provided their own body weight measurements
at Week 14.

RAUSA: Components of TEE
To investigate metabolic changes over the course of the race, we parsed
TEE measured Pre-Race, Week 1, and during the final week into four
components: basal metabolism, thermic effect of food (i.e., digestion
costs), running cost, and other. RMR was directly measured via respi-
rometry (RS1, RS3, and RS6) or estimated from height, weight, and age
using sex-specific equations for BMR (35). Thermic effect of food (in
kcal/day) was estimated as 10% of TEE. Running cost (in kcal/day)
was calculated from the “slope method” equation developed in a
meta-analysis of human running cost (38), using each subject’s body
mass (in kg) and distance run (in km/day), which gives kcal/day = 0.937
mass·distance. To this was added an elevation cost (in kcal/day) reflect-
ing the energy cost of the mean net change in elevation, DElevation
(in m/day). Following previous work on the cost of running uphill
(39), we assumed that elevation was gained at 23% efficiency (i.e.,
energy cost of climbing equal to the change in potential energy
divided by 0.23). This gives

Elevation cost ¼ 0:000239 ð9:8 DElevation ⋅mass=0:23Þ ð3Þ
where 0.000239 converts joules to kilocalories. Mean DElevation was
+207 m/day during Week 1 and −10 m/day during Week 20. Daily
running cost was therefore calculated as

Run ¼ 0:937 mass distanceþ elevation cost ð4Þ

Equation 4 was modified for subject RS2, who walked with a
backpack during the final week of the race (Week 14). Previous
work (40) indicates that the cost of walking while carrying a load
increases proportionally with the percentage increase in gross mass
(i.e., body mass + load). Thus, for RS2 during Week 14, we used the
walking cost equation from Rubenson and colleagues (38) and mul-
tiplied by 1.175 to account for the additional load being carried,
which was equal to 17.5% of his body weight, RunRS2_Week14 = 1.175
(0.492 mass·distance).

The portion of TEE remaining after subtracting basal metabolism,
the thermic effect of food, and running cost was denoted as “other.”
This component is part of what is often termed “activity energy ex-
penditure” and is analogous to “AEE2” described in a recent anal-
ysis of TEE and activity in a large human sample (17), that is, it is
the portion of TEE that is not attributable to empirically measured
activity (i.e., running), estimated dietary thermogenesis, or mea-
sured BMR.

RAUSA: Predicted TEE and metabolic adaptation
We calculated predicted TEE for Week 1 and the final week (Week 14
or Week 20) to test for metabolic adaptation in observed TEE. For
Week 1, we used the Pre-Race values for RMR (RMRPreRace) and other
(OtherPreRace) components of TEE and added to them the expected
running cost for Week 1 (Eq. 4). We then multiplied the sum of these
6 of 8
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three components by 1.11 to add the expected thermic effect of food (at
10% TEE) so that predicted Week 1 TEE, Week 1pred, was given as

Week 1pred ¼ 1:11 ðRMRPreRace þ otherPreRace þ RunWeek1Þ ð5Þ

Because the thermic effect of food is generally estimated at 10% of
energy intake, this approach assumes that TEE is equivalent to energy
intake. This assumption is reasonable because subjects were weight sta-
ble during Week 1 (mean weight change, 0.2 kg/week; table S3). Our
approach (Eq. 5) alsomakes the simplifying assumption that energy ex-
pended on activity not attributable to BMR, running, or digestion (i.e.,
the term “other” in Eq. 5) would not change from Pre-Race toWeek 1.
As evident from the fit between predicted and observed TEE for
Week 1 (Fig. 2 and table S3), these assumptions were consistent with
the results of our analyses.

We used a similar approach, with the same simplifying assumptions
for digestion costs and “other” expenditure, to calculate predicted TEE
in the final week, Finalpred (Week 14 orWeek 20), adjusting these values
to account for the change in FFM. Pre-Racemeasurements of TEEwere
correlated with FFM, increasing as 42 kcal/day per kg FFM (fig. S1),
similar to that reported for a large (n = 332) adult human sample
(17). Therefore, we reduced predicted final TEE, Finalpred, for each sub-
ject by 42 kcal/day per kg reduction in FFM

Finalpred ¼ 1:11 ðRMRPreRace þ otherPreRace þ
RunFinal – 42 DFFMÞ ð6Þ

where DFFMwas the change in FFM sinceWeek 1. Note that RunFinal
was calculated using the bodymass atWeek 14 orWeek 20 and there-
fore reflects the change in body mass fromWeek 1. This approach to
calculating predicted TEE for the final week takes into account
changes in body mass, FFM, distance run, and elevation gain. Differ-
ences between observed and predicted TEE (Fig. 2) therefore reflect
metabolic change that is not attributable to changes in body size,
FFM, or running costs.

We prefer this approach for calculating Finalpred TEE because
it follows an empirically based regression generated from a large
dataset (17) and allows us to incorporate data on running distance
and FFM. We note that an alternative approach, Hall’s dynamic
body composition simulator (22), provides similar results. We used
the simulator to calculate the difference between Week 1 TEE for
each subject and their estimated weight maintenance TEE for their
weight during the final week. The highest physical activity level
(2.5) permitted by the simulator was used. Substituting this cal-
culated difference for the 42 DFFM term in Eq. 6, we found that
the observed TEE in the final week was 219 to 793 kcal/day less than
expected from the simulator. Similarly, using DLW measures of
TBW and FFM rather than bioimpedance measures (see above)
produces similar results, with observed TEE 165 to 622 kcal/day less
than predicted.

RAUSA: Daily water throughput
Daily water throughput, a critical physiological variable in endur-
ance activities (15), did not track TEE strongly. For all six subjects,
mean water throughput increased from 4.79 ± 1.57 liters/day Pre-
Race to 8.41 ± 2.09 liters/day during Week 1. During the final week
(Week 14 or Week 20), mean water throughput among the five re-
maining subjects was essentially unchanged, trending slightly down
Thurber et al., Sci. Adv. 2019;5 : eaaw0341 5 June 2019
from Week 1 levels to 7.68 ± 1.60 liters/day (P = 0.32, paired t test;
table S1). Of these remaining subjects, three had marginally increased
water throughput at the end of the race, while the other two showed
decreases (table S1).
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