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Background & Aim: It is unclear if a reduction in hepatic fat
content (HFC) is a major mediator of the cardiometabolic bene-
fit of lifestyle intervention, and whether it has prognostic signif-
icance beyond the loss of visceral adipose tissue (VAT). In the
present sub-study, we hypothesized that HFC loss in response
to dietary interventions induces specific beneficial effects inde-
pendently of VAT changes.
Methods: In an 18-month weight-loss trial, 278 participants
with abdominal obesity/dyslipidemia were randomized to
low-fat (LF) or Mediterranean/low-carbohydrate (MED/LC
+ 28 g walnuts/day) diets with/without moderate physical
activity. HFC and abdominal fat-depots were measured using
magnetic resonance imaging at baseline, after 6 (sub-study,
n = 158) and 18 months.
Results: Of 278 participants (mean HFC 10.2% [range:
0.01%–50.4%]), the retention rate was 86.3%. The %HFC substan-
tially decreased after 6 months (�6.6% absolute units [�41%
relatively]) and 18 months (�4.0% absolute units [�29%
relatively]; p <0.001 vs. baseline). Reductions of HFC were asso-
ciated with decreases in VAT beyond weight loss. After control-
ling for VAT loss, decreased %HFC remained independently
associated with reductions in serum gamma glutamyltrans-
ferase and alanine aminotransferase, circulating chemerin, and
glycated hemoglobin (p <0.05). While the reduction in HFC
was similar between physical activity groups, MED/LC induced
a greater %HFC decrease (p = 0.036) and greater improvements
in cardiometabolic risk parameters (p <0.05) than the LF diet,
even after controlling for VAT changes. Yet, the greater improve-
ments in cardiometabolic risk parameters induced by MED/LC
were all markedly attenuated when controlling for HFC changes.
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Conclusions: %HFC is substantially reduced by diet-induced
moderate weight loss and is more effectively reduced by the
MED/LC diet than the LF diet, independently of VAT changes.
The beneficial effects of the MED/LC diet on specific car-
diometabolic parameters appear to be mediated more by
decreases in %HFC than VAT loss.
Lay summary: High hepatic fat content is associated with meta-
bolic syndrome, type 2 diabetes mellitus, and coronary heart
disease. In the CENTRAL 18-month intervention trial, a
Mediterranean/low-carbohydrate diet induced a greater
decrease in hepatic fat content than a low-fat diet, conferring
beneficial health effects that were beyond the favorable effects
of visceral fat loss.

ClinicalTrials.gov Identifier: NCT01530724.
� 2019 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Beyond total body fat content, fat distribution, both within adi-
pose tissue depots and in ectopic fat deposits, is increasingly
being shown to determine obesity-related health impact.1,2

Visceral adipose tissue (VAT), due to its unique anatomical loca-
tion, releases free fatty acids (FFAs) and adipokines to the liver
via the portal vein. Previous studies have demonstrated the
inter-relationship between VAT and hepatic fat content (HFC),
and indeed, increases in HFC were associated with similar meta-
bolic abnormalities as observed for increases in VAT.3,4 In addi-
tion, reductions in VAT and HFC are increasingly thought to
mediate the beneficial cardiometabolic outcomes of weight
loss.1,5 Though closely associated with HFC, VAT and HFC may
uniquely associate with specific effects and be linked indepen-
dently with risk factors of cardiometabolic disease.6 Interest-
ingly, data from recent studies found that HFC was more
strongly associated with obesity’s metabolic complications than
VAT,7 including the deterioration of glucose tolerance,8 possibly
by mediating the link between obesity and metabolic dysfunc-
tion.9,10 Most recently, the decrease in HFC was associated with
diabetes remission.11
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combined the Mediterranean and low-carbohydrate diets
described in our previous weight-loss trial (the DIRECT trial).15
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Diet plays an important role in the accumulation of HFC and
VAT.12 Several short-6,13 and long-term14,15 dietary interven-
tions have suggested that Mediterranean and low-carb diets
had favorable effects on VAT and HFC accumulation, but also
on glycemic status and lipid biomarkers. Others found no differ-
ences between HFC changes induced by diets with different
amounts of carbohydrate.16 The effect of specific long-term life-
style interventions on HFC and its association with the dynam-
ics of cardiometabolic risk, beyond VAT loss, remain unclear.
Notably, recent guidelines for decreasing HFC do not suggest a
particular lifestyle strategy, but only endorse weight loss as a
general recommendation.17

In the present sub-study, we hypothesized that, similarly
hypocaloric, low-fat (LF) and Mediterranean/low-carbohydrate
diets differ in their capacity to induce HFC loss, which mediates
the improvements in cardiometabolic parameters indepen-
dently of the impact of accompanying decreases in VAT.

Materials and methods
The CENTRAL trial (ClinicalTrials.gov Identifier: NCT01530724)
was an 18-month randomized controlled trial.18 In the first ran-
domization, participants were randomly assigned to 1 of 2
calorie-restricted diets for the entire study period: an LF diet19

(n = 139) or a Mediterranean/low-carbohydrate (MED/LC) diet15

(n = 139). In the second randomization, 6 months after initiating
the dietary intervention, each diet group was further random-
ized into added physical activity (PA) groups (LFPA+, MED/LCPA+)
or no added PA groups (LFPA�, MED/LCPA�) for another
12 months of intervention (diets were continued throughout,
according to the first randomized dietary assignment). This
2-stage study design was based on our previous results from
the DIRECT study,15 in which the dietary weight loss was max-
imal by 6 months (‘‘rapid weight loss phase”). Participants were
randomized after all had been recruited, in 1 phase, and after
their strata characteristics were defined.18 The intervention
was conducted at a facility with a workplace medical clinic
and monitored cafeteria.

Eligibility and study design
Inclusion criteria were: abdominal obesity (waist circumference
[WC] >40 inches [102 cm] for men and >35 inches [88 cm] for
women), or participants with triglycerides ≥150 mg/dl and
high-density lipoprotein (HDL) <40 mg/dl for men and
<50 mg/dl for women. Candidates were excluded if: they had
serum creatinine ≥2 mg/dl, impaired liver function (≥3-fold
the upper level of alanine aminotransferase [ALT] and aspartate
aminotransferase), or active cancer; they were pregnant or lac-
tating women, highly physically active (>3 h/week) or unable to
take part in PA, or if they had participated in another trial. The
study protocol was approved by the Medical Ethics Board and
the Helsinki Committee of the Soroka University Medical
Center. All participants provided written informed consent
and received no financial compensation or gifts.

Diet intervention
Both diets aimed for a moderate, long-term, weight loss with
restricted intake of trans-fats and refined carbohydrates, and
an increased intake of vegetables. Lunch was provided exclu-
sively by the workplace cafeteria during the working week,
and a dietitian worked closely with the kitchen staff to
adjust the diets to the specific groups. The 18-month dietary
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intervention included a 90-min nutritional session in the work-
place with clinical dietitians every week during the first month
of the intervention, and every month thereafter. Participants
were trained to adhere to their specific diets during the entire
week. For the LF diet, the aim was to limit total fat intake to
30% of calories, with up to 10% of saturated fat, and no more
than 300 mg/day of cholesterol, and to increase dietary fiber.
Participants were counseled to consume whole grains, vegeta-
bles, fruits, and legumes and to limit their consumption of addi-
tional fats, sweets, and high-fat snacks. The MED/LC diet
The diet restricted carbohydrate intake to less than 40 g/day in
the first 2 months (induction phase), and thereafter a gradual
increase up to 70 g/day, and increased protein and fat intake,
according to the MED diet. The MED/LC diet was rich in vegeta-
bles and legumes and low in red meat, with poultry and fish
replacing beef and lamb. This group was provided 28 g of wal-
nuts/day (160 kcal/84% fat, mostly polyunsaturated fatty acids
[omega-3 a-linolenic acid]) starting from the third month after
the induction phase.

Physical activity intervention
At the second randomization (after 6 months of dietary inter-
vention), participants assigned to added PA received a free
supervised gym membership for the following 12 months. The
exercise intervention included monthly educational workshops,
and 1 h of exercise, 3 times a week. Participants were guided to
engage in 45 min of aerobic training at 80% of maximum heart
rate and 15 min of resistance training at 80% of the
1-repetition maximum of the weight.

Magnetic resonance imaging outcomes
Magnetic resonance imaging (MRI) was performed using a
3-Tesla magnet (Ingenia 3.0 T, Philips Healthcare, Best, the
Netherlands) at baseline, after 6 (only for 157 of participants,
randomly selected) and 18 months. The scanner utilized a 3D
modified DIXON (mDIXON) imaging technique without gaps
(2 mm thickness and 2 mm of spacing).18 The percentage of
HFC was assessed in a defined area of 2,000 mm2, using a
regions of interest (ROI) method20 based on measurements of
tissue signals (fat/fat + water) using the Fat Ratio Calculation
PRIDE software from Philips Medical Systems. We analyzed
the liver in 2-dimensional 3 cm intervals, referring to each
image as a ‘‘slice”. The number of ROIs in each slice was deter-
mined proportionally to the image area. We divided each slice
into quarters, and chose ROIs in each of the four-quarters in
order to represent the entire liver. We determined the mean
percentage of fat for each slice and quarter, and then calculated
the mean percentage of fat of the liver as a whole. Fat quantifi-
cation was performed blinded to time-point and treatment
group. The reliability of measurements between technicians
was measured in 28 images. Inter-observer correlation (2 inde-
pendent observers) was r = 0.99, p <0.001 and intra-observer
correlation was r = 0.98, p <0.0001. Abdominal fat was quanti-
fied using MATLAB-based semi-automatic software that was
written in-house.21,22 Three slices were selected from an
intra-vertebral space of L5-S1, L4-L5 and L2-L3 and a continuous
line was drawn over the superficialis fascia to differentiate
between the deep subcutaneous adipose tissue (SAT) and super-
ficial SAT. Mean VAT, deep SAT and superficial SAT were calcu-
lated from the 3 axial slices.
19 vol. xxx j xxx–xxx
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Clinical, metabolic and anthropometric outcomes
Height (±0.1 cm) was measured using a standard wall-mounted
stadiometer. Body weight (±0.1 kg) was measured without
shoes. WC (±0.1 cm) was measured half-way between the last
rib and the iliac crest. Fasting blood samples were centrifuged
and stored at �80 �C. All biomarkers were assayed in the Leipzig
University laboratories, Germany. Fasting plasma glucose was
measured by Roche GLUC 3 (hexokinase method). Plasma insu-
lin was measured with an enzyme immunometric assay (IMMU-
LITE� automated analyzer, Diagnostic Products, coefficient of
variation [CV] = 2.5%). Serum total cholesterol (CV = 1.3%),
HDL, low-density-lipoprotein, and triglycerides (CV = 2.1%)
were determined enzymatically with a Cobas� 6000 automatic
analyzer (Roche). Homeostasis model assessment of insulin
resistance (HOMA-IR) were calculated using HOMA Calculator
v2.2.3. Chemerin serum concentrations were determined using
a commercially available ELISA kit (Human Chemerin ELISA,
Biovendor, Heidelberg, Germany) according to the manufac-
turer’s instructions.

Electronic questionnaires
Adherence to the dietary and PA interventions was evaluated
using a validated electronic food-frequency and activity ques-
tionnaire (FFQ)23 as published in our previews publication.18

The FFQ contains 127 food items, 17 of them with 3 portion-
size pictures, and lifestyle and PA questions, as well as symp-
toms, adverse-effects, quality of life, medication usage, and
safety at baseline and after 6 and 18 months of intervention.
The electronic questionnaires were self-administered and
helped to ensure completeness of the data by prompting the
participant when a question was not answered, and it permitted
rapid automated reporting to the group dietitians.

Statistical analysis
The primary outcome of the key CENTRAL study,18 as defined in
clinicaltrials.gov, was change in body fat composition. In this
sub-study, we aimed to address the influence of HFC reduction
by lifestyle interventions, on improvement of cardiometabolic
markers, beyond VAT loss. For the 18-month time point, we per-
formed intention-to-treat analyses, including all 278 partici-
pants, by imputing the missing observations for all adipose
tissues for 38 individuals by the multiple imputation tech-
nique.24 No imputation has been performed for adipose tissue
at 6-month time point (only 57%, randomly selected). For miss-
ing body weight data, we used the last observation carried for-

independent intervention effects. The association between 18-
month changes in %HFC and the dynamics of cardiometabolic
risk parameters was tested by linear regression models adjusted
for age, sex and the 4 intervention groups. Next, in separate
models, we further adjusted for body weight or VAT changes.
We calculated cardiovascular risk using 3 different scores: The
Framingham risk score,25 Systematic COronary Risk Evaluation
(SCORE),26 and the American College of Cardiology/American
Heart Association (ACC/AHA)-pooled cohort equations.27 The
data were analyzed by SPSS software Version 23.

Results
Baseline characteristics
At baseline, participants (mean age = 48 years, 89% men, body
mass index [BMI] = 30.8 ± 3.8 kg/m2) had 10.2% HFC (median
6.38%), widely ranging between 0.01% and 50.4%. Of the 278 par-
ticipants, 53% had non-alcoholic fatty liver disease (NAFLD) (HFC
above 5%), 40% met the criteria for the metabolic syndrome, 75%
had abnormal WC and 11% were diabetic. Few participants used
medications chronically (anti-platelet = 7%, anti-hypertensive =
8%, lipid-lowering = 12%, oral glycemic-control = 3% and insulin
treatment = 1%),withminor changes during the intervention that
were similar between groups. Characteristics of the CENTRAL
studypopulationacross interventiongroups are shown inTable1.
There were no significant differences at baseline between the
intervention groups in demographic variables, energy intake
and consumption of macronutrients, blood markers, HFC, or
abdominal fat sub-depots, but only in VAT area in females.

Dynamics of HFC throughout the intervention
In the entire cohort, HFC substantially decreased after 6 months
(�6.6% absolute units [�41% relatively]) and 18 months (�4.0%
absolute units [�29% relatively]) (p <0.001 vs. baseline), along
with moderate body weight loss (�5.8% and �3.1% after 6 and
18 months, respectively). The 18-month retention rate was
86.3%. Decreased %HFC directly correlated with loss in all 3 lay-
ers of abdominal sub-depots after 6 and 18 months, when the
models were adjusted for age and sex (p <0.001 for all). However,
when the models were further adjusted for weight loss,
decreased %HFC remained associated only with reduction of
VAT at 6 months (b = 0.232; 95% CI 0.13–0.34) and 18 months
(b = 0.155; 95% CI 0.04–0.31), but not with deep SAT or superfi-
cial SAT changes at 6 and 18 months (p >0.54 for all). After con-
trolling for VAT changes, MED/LC diet tended to decrease %HFC
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ward. To characterize the entire study population, quantitative
variables were expressed as means and standard deviations.
All p values were 2-sided and p values <0.05 were considered
statistically significant. Analysis of variance with a covariance
test was used to assess changes in nutrient intakes between
the dietary strategies. %HFC was ln-transformed at each time
point, and the delta was calculated accordingly, allowing us to
generate a normal distribution. At baseline, the association
(p of trend) between %HFC and cardiometabolic risk parameters
across sex-specific quintiles of VAT was tested, in order to esti-
mate baseline relationships between these 2 main parameters
of interest, using univariate linear regression (Table 1). Pearson’s
correlation coefficient was used between continuous variables.
We used multivariate linear regression models to assess changes
between diet groups in the dynamics of %HFC after 6 and
18 months, adjusted for age, sex, ln-transformed %HFC at base-
line, WC (cm) at baseline, and VAT changes in order to identify
Journal of Hepatology 20
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more than LF diet after 6 months (MED/LC: �7.3 ± 9.2% vs. LF:
�5.8 ± 7.2% [absolute units], p = 0.079 between diets), a differen-
tial effect between the dietary intervention groups that became
significant at 18 months of intervention (MED/LC: �4.2 ± 7.1%
vs. LF: �3.8 ± 6.7% [absolute units], p = 0.036 between diets).
Furthermore, the advantageous effect of MED/LC on HFC reduc-
tion over LF diet was significant even in patients without NAFLD
(HFC ≤5%, p = 0.037), as in patients with NAFLD (HFC >5%,
p = 0.014). No significant differences were observed between
the PA groups (p = 0.32) for HFC changes after 18 months, with
or without adjustment for VAT changes. The changes in HFC over
18 months of intervention across different subgroups of the
cohort are shown in Fig. 1. Higher HFC at baseline was found,
as expected, in males (10.7% vs. 5.8%, p = 0.001), in participants
with BMI ≥30 (12.7% vs. 7.0%, p <0.001) and in those with VAT
>30% at baseline (11.5% vs. 8.0%, p = 0.007). The relative reduc-
tions of %HFC induced by the intervention were higher in males
19 vol. xxx j xxx–xxx 3
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Table 1. Baseline characteristics of the CENTRAL study population across the 4 intervention groups, n = 278.

Intervention groups

Low-fat diet without
physical activity

(n = 76)

Low-fat diet with
physical activity

(n = 63)#

Mediterranean/low-
carbohydrate without physical

activity (n = 73)

Mediterranean/low-
carbohydrate with physical

activity (n = 66)#

All
(n = 278)

Hepatic fat content (%) 10.8 ± 10.3 9.2 ± 9.0 10.1 ± 10.8 10.5 ± 11.3 10.2 ± 10.4
NAFLD patient (>5%), % 57 56 48 52 53
Age (yr) 49.3 ± 9.3 47.2 ± 9.0 47.0 ± 8.9 47.9 ± 9.8 47.8 ± 9.3
Male, % 84 92 85 95 89
Weight (kg) 90.6 ± 14.1 91.5 ± 12.8 91.6 ± 14.5 92.2 ± 11.9 91.4 ± 13.4
Waist circumference
(cm)

105.6 ± 9.4 106.9 ± 8.5 106.4 ± 11.6 108.0 ± 8.5 106.7 ± 9.6

BMI (kg/m2) 31.1 ± 3.9 30.4 ± 3.5 31.0 ± 4.5 31.0 ± 3.3 30.8 ± 3.8
Systolic pressure
(mmHg)

125 ± 16 122 ± 13 124 ± 18 126 ± 16 124 ± 16

Diastolic pressure
(mmHg)

79 ± 11 78 ± 10 81 ± 12 82 ± 11 80 ± 11

Fasting blood biomarkers
Glucose (mg/dl) 106.4 ± 17.1 106.7 ± 18.2 107.4 ± 18.3 108.8 ± 18.3 107.3 ± 23.6
HOMA-IR 4.4 ± 2.6 4.7 ± 3.4 4.7 ± 3.8 4.5 ± 3.8 4.6 ± 2.7
Triglycerides (mg/dl) 71.8 ± 41.4 78.7 ± 44.4 73.5 ± 41.9 66.5 ± 41.9 72.6 ± 36.6
LDL (mg/dl) 123.2 ± 33.7 124.5 ± 29.9 120.6 ± 34.1 121.1 ± 34.1 122.3 ± 27.1
HDL (mg/dl)*
Male 41.8 ± 11.7 41.2 ± 10.7 40.8 ± 9.0 42.8 ± 8.4 41.6 ± 10.0

tr
re
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Female 54.3 ± 15.2 58.1 ± 24.8
Chol/HDL ratio 5.03 ± 1.90 5.23 ± 1.65
ALP (IU/L) 73.8 ± 17.1 72.5 ± 22.4
ALT (U/L) 25.3 ± 13.5 29.0 ± 24.7
GGT (U/L) 25.8 ± 14.3 32.9 ± 24.9
Chemerin (ng/ml) 189.5 ± 22.7 185.7 ± 19.0
Leptin (mg/dl)*
Male 11.1 ± 7.6 11.8 ± 6.2
Female 41.1 ± 23.0 22.3 ± 6.1

Adiponectin (mg/dl) 9.9 ± 9.4 10.0 ± 9.0
Abdominal fat sub-depots
Visceral fat (cm2)*
Male 180.0 ± 74.2 189.2 ± 62.2
Female 159.7 ± 53.8 92.7 ± 37.9

Deep-SAT (cm2)*
Male 209.5 ± 70.4 219.9 ± 71.8
Female 211.1 ± 52.5 177.2 ± 39.1

Superficial-SAT (cm2)*

Male 130.4 ± 58.2 135.6 ± 50.0
Female 224.3 ± 79.1 184.3 ± 44.5

Values in the table are means ± SD. ALP, alkaline phosphatase; ALT, alanine amino
transferase; HDL, high-density lipoprotein; HOMA-IR, homeostatic model of insulin
ANOVA test was used to assessed differences between groups at baseline.
*

and in patients with BMI ≥30 or VAT ≥30%, even after controlling
for 18-month VAT changes. Interestingly, in a model adjusted for
weight loss, the beneficial effect of MED/LC diet over the LF diet
was more apparent among males (p = 0.016) and in participants
with VAT over 30% at baseline (p = 0.018), but similarly in both
BMI groups. We further performed sensitivity analyses among
the participants that completed both 6 and 18 months of MRI-
body fat measurements (i.e., 6-month sub-study), and a similar
pattern was observed (data not shown). Similar results were also
found when excluding participants using insulin.

Association between %HFC loss and nutritional intake
changes
Overall, during the intervention, participants significantly
decreased their energy intake after 6 and 18 months
(p <0.001 vs. baseline), but similarly across diet groups (total
calorie intake [�26% vs. �22% in the MED/LC diet vs. LF diet,

p <0.05 between gender groups.
^ p <0.05 between intervention groups.
# After 6-months of dietary the intervention (19 dropout), each diet group was further r
intervention.
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51.3 ± 15.8 63.6 ± 7.3 54.8 ± 16.4
4.95 ± 1.46 4.76 ± 1.46 4.99 ± 1.58
70.9 ± 21.6 66.7 ± 21.6 71.0 ± 19.3
25.8 ± 12.4 28.8 ± 12.4 27.1 ± 14.3
26.9 ± 15.3 28.1 ± 15.3 28.4 ± 18.7

185.7 ± 22.4 193.2 ± 22.4 188.5 ± 24.4

11.3 ± 9.0 13.6 ± 7.9 11.9 ± 7.8
33.7 ± 25.8 30.8 ± 1.3 34.4 ± 21.6

9.6 ± 8.3 13.2 ± 8.3 10.6 ± 12.4

168.0 ± 57.5 189.7 ± 61.4 181.6 ± 64.4
118.2 ± 67.8 69.7 ± 27.6 125.4 ± 61.7^

220.7 ± 87.3 223.0 ± 71.0 218.2 ± 75.2
213.2 ± 91.7 166.8 ± 33.9 200.1 ± 66.3

133.9 ± 55.6 131.5 ± 47.1 132.8 ± 52.7
243.0 ± 104.5 179.0 ± 34.2 220.1 ± 82.8

ansferase; BMI, body mass index; Chol, total cholesterol; GGT, gamma glutamyl-
sistance; LDL, low-density lipoprotein; SAT, subcutaneous adipose tissue. One-way
respectively, p = 0.18]). Changes in the intake of marco- and
micro-nutrients compared to baseline are shown in Fig. 2.
After 18 months of intervention the MED/LC diet greatly
decreased intake of carbohydrate and trans-fat, while the LF
diet decreased the intake of total fat, monounsaturated fat
and cholesterol, and tended to decrease polyunsaturated and
saturated fats (p <0.05 for all, Fig. 2A). In addition, the MED/
LC diet increased the consumption of nuts (p <0.05, Fig. 2B).
Decrease of HFC after 18 months correlated with decreased
carbohydrate intake (r = 0.175, p = 0.009), and with increased
fat intake (r = �0.217, p = 0.001), as proportions of total calorie
intake.

Association between HFC and cardiometabolic risk
parameters
In the entire group, significant improvements in car-
diometabolic markers were observed after 18 months of

andomized into added physical activity groups or diet only for the last 12-months of
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intervention, including decreases in total cholesterol/HDL
ratio by –0.3 (4.4%), gamma-glutamyl transferase (GGT) by

95% CI 0.23–0.53) even after controlling for VAT changes. When
data was stratified to HFC within and above normal range (i.e.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Without With <50 ≥50 Female Male <30 ≥30 <30% ≥30%

Physical activity Age, yr Sex BMI, kg/m2

%
 H

FC
* $

* $

* $

36%
43%

27% 32%

31%

40%

21%

35%

22%

33%

Visceral fat

Baseline 18-month

(63%)(37%)(50%)(45%)(88%)(12%)(42%)(58%)(50%)(50%)

Fig. 1. Hepatic fat content at baseline and after 18 months of intervention by subgroups. Bar values in the fig. are means ± SE of HFC, at baseline and after
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12.4 IU/L (8.2%) and fasting circulating insulin levels by
�3.3 lU/ml (12.2%), (p <0.001 for all vs. baseline). We examined
the association between 18-month dynamics of HFC with
18-month changes in hepatic and cardiometabolic parameters
using multivariate regression models (Fig. 3). In models
adjusted for age, sex and intervention group, decreased HFC
was associated with decreased GGT (b = 0.443; 95% CI 0.32–
0.56), ALT (b = 0.253; 95% CI 0.12–0.39), cholesterol/HDL ratio
(b = 0.226, 95% CI 0.09–0.35), triglyceride/HDL ratio (b = 0.209,
95% CI 0.03–0.30) and chemerin (b = 0.393, 95% CI 0.26–0.52).
To assess the contribution of decreased HFC independent of
VAT, the model was further adjusted for VAT changes.
Associations between reductions in HFC and lipid parameters
were attenuated by adjusting for VAT changes. However,
reduction of HFC remained significantly and independently
associated with reduced GGT (b = 0.330; 95% CI 0.24–0.42),

ALT (b = 0.189; 95% CI 0.04–0.35) and chemerin (b = 0.382;
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<5% and ≥5%, respectively), similar associations between groups
were found with GGT, chemerin, and cholesterol/HDL ratio
(p <0.05 for all). However, while ALT and % glycated hemoglobin
(%HbA1c) were associated with HFC loss only for the ≥5% HFC
group, insulin levels were associated with HFC in the <5% HFC
group (Fig. S1).

To compare the impact of losses of HFC, VAT and total weight
on improvement in cardiometabolic parameters induced by
MED/LC versus LF, we determined how adjustment for those
parameters attenuated the differences between the 2 dietary
interventions. Compared to the LF diet, MED/LC diet induced a
greater increase in HDL (3.3 ± 7.5 vs. 5.6 ± 7.1 mg/dl), and a
more pronounced decrease in diastolic blood pressure
(1.2 ± 10.1 vs. �1.9 ± 7.5 mmHg), triglycerides (�3.4 ± 43.7 vs.
�10.8 ± 28.0 mg/dl), triglyceride/HDL ratio (�0.15 ± 0.4 vs.
�0.23 ± 0.4) and cardiovascular risk by the 3 different scores:
Framingham (�0.27 ± 2.2 vs. �0.81 ± 1.9), SCORE (�0.16 ± 1.4
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vs. �0.50 ± 1.2), and ACC/AHA score (�0.39 ± 2.7 vs.
�1.13 ± 2.5), (p <0.05 for all, Fig. 4). These differences remained
significant when body weight and VAT changes were added to
the multivariate model (Fig. 4). However, after adjustment for
HFC changes, differences between diets were significantly
attenuated, particularly the changes in triglycerides, triglyc-
eride/HDL ratio and in the cardiovascular risk scores. When data
were stratified for within and above normal HFC at baseline, the
beneficial effect of the MED/LC diet over the LF in reducing car-
diovascular risk scores became insignificant, possibly due to the
lower power of the analysis. Nevertheless, similar trends were
noted in both the normal HFC and abnormal HFC subgroups
(Figs. S2A and S2B, respectively). There was no significant effect
by the PA intervention on improvement of cardiometabolic

the liver and/or hepatocellular damage (beyond aminotrans-
ferase levels). The accuracy of quantifying liver fat in patients
with HFC within the normal range (<5%) had been questioned.
However, several recent publications evaluated the accuracy
of hepatic proton density fat fraction (PDFF) measurements
using MRI, and found that MRI-PDFF is an accurate non-
invasive method for quantifying HFC even within the range
below 5%.28,29. Participants in this trial, although overweight
or obese, were relatively healthy (low rate of chronic medicine
and only 11% were diabetic), therefore, it may be difficult to
extend conclusions to individuals with more advanced liver dis-
ease. The strengths of the study include the following: all partic-
ipants started the study simultaneously (1-phase study design);
the use of the 3-T MRI scan; we treated HFC as a continuous
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parameters or cardiovascular risk.

Discussion
In this long-term lifestyle intervention trial, the MED/LC
induced a significantly greater decrease in HFC than the LF diet,
even after accounting for the differences in VAT loss. The impact
of HFC reduction is highlighted by associated improvements in
GGT, ALT, chemerin and HbA1c, which remained significant
after adjustment for total weight loss or VAT change. In addi-
tion, the MED/LC diet was superior to the LF diet in decreasing
cardiometabolic risk, a difference that was attenuated when
adjusting for the decrease in HFC, but not following adjustment
for weight or VAT.

Our study has several notable limitations. The small number
of women (12%) limits our confidence in applying conclusions
to females (although expected differences between males and
females in various laboratory and fat distribution parameters
were detectable). Information regarding adherence to the diets
is based on questionnaires and attendance to the diet sessions.
However, validated23 questionnaires were used in order to
ensure the highest level of accuracy as possible. In addition,
since this study did not include histological tissue analyses,

we were unable to trace changes in inflammatory processes in
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variable, enabling us to define the amount of fat even within
the normal range (<5%); the relatively long duration of the study
and the high rate of adherence.

Despite the moderate weight loss in this study (�3 kg), we
observed a highly discernable decrease in HFC that was greater
in response to MED/LC diet than to LF diet. Previous studies
focused on weight loss as a key factor in reducing HFC and its
comorbidities in obese individuals.30,31 Therefore, it is not sur-
prising that the guidelines of the American Association for the
Study of Liver Diseases32 suggest weight loss through general
nutritional care as a first-line intervention for NAFLD. However,
the weight-loss phase mostly occurs during the first 6 months,
followed by a weight regain phase, as we have previously
shown.15 Adipose tissue expansion during weight gain may
result in a decreased insulin response and, thus, increased lipol-
ysis and FFA production, which support hepatic lipid accumula-
tion.33 Some recent studies34,35 have shown long-term
reduction of HFC and improvement in liver markers despite
weight gain after dietary weight loss. Bozzetto et al.13,36 showed
that an isocaloric diet enriched in monounsaturated fatty acids
results in a reduction in HFC (by increasing fat oxidation), inde-
pendent of weight change. In addition, the beneficial effect of
different dietary strategies has been demonstrated in previous
studies suggesting significant reductions in HFC with minor to
19 vol. xxx j xxx–xxx
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indicating HFC. GGT is frequently elevated in patients with
NAFLD,41 possibly because increased fat in the liver may induce

GGT has been included only as part of a group of biomarkers
used to predict increased HFC44 and not as an independent
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moderate weight loss,37 but this was not observed in larger,
more recent studies.38 Nevertheless, data are sparse regarding
the effect of specific long-term dietary interventions on HFC,
beyond VAT loss. In a randomized study,39 170 overweight or
obese individuals were randomly assigned to either reduced
fat or reduced carbohydrate, calorie-restricted diets for
6 months, and found similar beneficial effects of the 2 interven-
tion arms on HFC reduction.

Our results reveal that reductions in liver markers and
chemerin are associated with a decrease in HFC, potentially at
least partially independent of the VAT-liver axis. Thus, clinically,
tracking changes in those biomarkers may reveal changes in
HFC that are currently difficult to track directly by imaging or
to estimate by other means: liver biopsy is still considered the
current clinical gold standard in this regard,2 but there is an
urgent need for non-invasive blood biomarkers that can be
relied on. A particularly difficult challenge is to find indepen-
dent biomarkers that reflect the dynamics of HFC, even beyond
VAT. Liver enzyme ALT is the biomarker most commonly used to
assess HFC content and liver injury. However, several stud-
ies40,41 have shown that ALT does not necessarily correlate
strongly with HFC or with the severity of liver damage. In a
cross-sectional study40 in which 31% of participants had ele-
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vated HFC (assessed by MRI), 79% of those had normal levels
of ALT. These highlight the urgent need for novel biomarkers

n technique. After 18 month of intervention, 38 participants dropped out and
res include the Framingham risk score, Systematic Coronary Risk Evaluation
CC/AHA). BP, blood pressure; CV, cardiovascular; MOD, mean-of-differences;
hepatocellular damage that leads to increased GGT synthesis.42

Moreover, histological improvement of the liver was associated
with reductions in GGT concentrations with weight loss.43 Yet,
biomarker. In the present study, mean GGT and ALT levels at
baseline were in the normal range. Therefore, it is possible that
considering changes (deltas) in these parameters may be of
greater clinical impact than the absolute values in a cross-
sectional setting, even within the normal range of these
parameters.

Chemerin45 is an ‘‘adipo-hepatokine” which was found to be
associated with obesity and impaired cardiometabolic state.46

In a prospective study47 levels of chemerin were found to be
directly correlated with severity of NAFLD in obese patients.
Previously we reported48 that chemerin dynamics tightly corre-
spond to changes in body weight in the DIRECT trial,15 decreas-
ing during the weight-loss phase and stabilized or increased
during the weight maintenance/regain phase. Nonetheless, the
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randomized trial. Ann Intern Med 2015;162:325–334.
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link between chemerin and the dynamics of HFC over time has
yet to be demonstrated. Notably, the dynamic range of total
chemerin levels is low, potentially limiting its use as a
biomarker. Possibly, considering different isoforms of this
adipo-hepatokine could enhance its sensitivity and specificity
as a biomarker for HFC dynamics.

Our analyses suggest that HFC changes, rather than VAT
changes, may play a particular role in mediating the greater
beneficial effects of MED/LC over the LF dietary intervention.
After adjusting for HFC changes, the differences in the associa-
tion of the diets with improvements in lipid profile and in the
cardiovascular risk scores became statistically insignificant.
We did not observe such attenuation when controlling for
weight or VAT loss. Recent long-term dietary interventions
and meta-analyses have shed light on the ability of low-
carbohydrate and Mediterranean14,15,49,50 diets to serve as alter-
natives to traditional LF diets in inducing weight loss and
improved cardiometabolic profile. A previous cross-sectional
analysis has also suggested that HFC has a stronger association
with obesity-related cardiometabolic risk than VAT does.8

Moreover, another study that matched subgroups of patients
with similar VAT but different HFC, suggested that increased
HFC was cross-sectionally associated with insulin resistance.7

Our current randomized trial results strengthen the notion,
and provide evidence, supporting the unique impact of HFC on
such risk, showing that these associations occur in response to
intervention and are not merely cross-sectional observations.
Our findings are also in line with results from mechanistic, fat
transplantation studies in mice, in which mesenteric (portally
drained), but not parietal peritoneal (systemically drained via
the vena cava) transplantation induced worse metabolic out-
come.51,52 However, in humans, conflicting results were
obtained on the putative metabolic benefit of omentectomy
(surgical VAT reduction) during bariatric surgery.53 Thus,
although HFC partially reflects a downstream consequence of
increased VAT, our results strengthen the notion that HFC
mechanistically contributes to cardiometabolic risk indepen-
dently of VAT. Moreover, they highlight the potential value of
interventions specifically targeting the hepatic manifestations
of obesity, such as LC/MED diet, in diminishing health risks
associated with obesity.

The amount of HFC accumulation depends, among other
things, on an interaction between hepatic FA uptake, derived
from plasma FFAs released from triglyceride hydrolysis in adi-
pose tissue and circulating triglycerides, and de novo lipogenesis
(DNL)54. It has been demonstrated that an LF, high-carbohydrate
diet significantly increased hepatic DNL compared to an isocalo-
ric high-fat, low-carbohydrate diet.55 Moreover, it is well-
established that excessive consumption of sugar, and fructose
in particular, leads to dietary carbons channeling directly to
the liver, supporting DNL.56 These mechanisms may also explain
the superiority of the MED/LC diet, including a daily intake of
walnuts, over the LF diet, regarding the reduction in HFC. Thus,
our study highlights the specific potential of MED/LC as a partic-
ular dietary strategy to treat NAFLD.

In summary, this sub-study demonstrates how different
weight-loss strategies may induce favorable dynamics of HFC
and consequently improve cardiometabolic risk. We suggest
that improvements in specific easily tracked blood biomarkers
and cardiovascular risk were associated with a decrease in
HFC, beyond the loss of VAT. Thus, rather than focusing on
weight loss only, our findings suggest that an LC/MED dietary
8 Journal of Hepatology 20
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intervention may be used as a specific approach for the manage-
ment of NAFLD.
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