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Food insulin index: physiologic basis for predicting insulin demand
evoked by composite meals1–3

Jiansong Bao, Vanessa de Jong, Fiona Atkinson, Peter Petocz, and Jennie C Brand-Miller

ABSTRACT
Background: Diets that provoke less insulin secretion may be help-
ful in the prevention and management of diabetes. A physiologic
basis for ranking foods according to insulin “demand” could there-
fore assist further research.
Objective: We assessed the utility of a food insulin index (FII) that
was based on testing isoenergetic portions of single foods (1000 kJ)
in predicting the insulin demand evoked by composite meals.
Design: Healthy subjects (n = 10 or 11 for each meal) consumed 13
different isoenergetic (2000 kJ) mixed meals of varying macronu-
trient content. Insulin demand predicted by the FII of the component
foods or by carbohydrate counting and glycemic load was compared
with observed insulin responses.
Results: Observed insulin responses (area under the curve relative
to white bread: 100) varied over a 3-fold range (from 35 6 5 to 116
6 26) and were strongly correlated with insulin demand predicted
by the FII of the component foods (r = 0.78, P = 0.0016). The
calculated glycemic load (r = 0.68, P = 0.01) but not the carbohy-
drate content of the meals (r = 0.53, P = 0.064) also predicted
insulin demand.
Conclusions: The relative insulin demand evoked by mixed meals
is best predicted by a physiologic index based on actual insulin
responses to isoenergetic portions of single foods. In the context
of composite meals of similar energy value, but varying macronu-
trient content, carbohydrate counting was of limited value. Am
J Clin Nutr 2009;90:986–92.

INTRODUCTION

A physiologic basis for classifying all foods according to their
postprandial insulin response is of both theoretical and practical
significance. In individuals at risk of developing type 2 diabetes,
diets that provoke excessive insulin secretion may increase ox-
idative stress and accelerate the course of b cell failure (1). In
overweight subjects, high-carbohydrate diets are associated with
postprandial hyperinsulinemia and less favorable cardiovascular
risk factors than diets containing less carbohydrate (2). Con-
versely, diets with a lower glycemic index (GI) or glycemic load
(GL) elicit lower postprandial insulin responses and produce
better clinical outcomes compared with diets with higher GI or
GL (3–5).

An insulin index of foods may also facilitate the day-to-day
management of type 1 diabetes. Currently, insulin dose is esti-
mated by carbohydrate counting, but there is potential for it to
be more precisely predicted by a greater understanding of the

relative “insulin demand” evoked by different foods. Together,
carbohydrate counting and knowledge of the GI of foods provide
the most accurate prediction of likely insulin response (6, 7).
However, because GI methodology does not permit the testing of
foods with little or no carbohydrate, it cannot provide a guide to
the relative insulin response of a large majority of foods in food
databases, including high-protein foods such as meat, fish,
poultry, eggs, and cheese and high-fat foods such butter and olive
oil. Although carbohydrate is the primary stimulus for insulin
secretion, it is not the only one. Protein-rich foods also elicit
a significant insulin response and, when combined with carbo-
hydrate, act synergistically to raise insulin concentrations and
reduce glycemia (8). Similarly, addition of fat to a carbohydrate-
rich meal reduces postprandial glycemia but not the insulin re-
sponse (9, 10). Several insulinotropic factors are known to
potentiate the stimulatory effect of glucose and mediate post-
prandial insulin secretion. These factors include specific amino
acids and fatty acids and gastrointestinal hormones such as
gastric inhibitory polypeptide, glucagon-like peptide 1, glucagon,
and cholecystokinin (10, 11).

In previous research, we compared insulin responses to
isoenergetic portions of foods with the use of a 1000-kJ portion
as the basis of comparison (12). A food insulin index (FII) was
calculated for 38 foods with the use of the observed insulinemic
response (area under the curve; AUC) relative to the reference
food, white bread (=100). The aim of the present study was to
develop the FII database further and to determine whether the
concept was able to predict insulin responses to mixed meals
composed of variable amounts of foods whose individual FII
had been previously determined. We hypothesized that post-
prandial insulin responses to mixed meals would be more ac-
curately predicted by the weighted average FII of the individual
foods than by their carbohydrate content or GL (carbohydrate
content · GI).
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SUBJECTS AND METHODS

Subjects

Healthy subjects (n = 21, including 13 men), with a mean
(6SD) age of 24 6 2.5 y and body mass index (BMI; in kg/m2)
of 22.8 6 1.5, were recruited from the student population of the
University of Sydney. All met the inclusion criteria: non-
smoking, aged 18–40 y, stable body weight, BMI of 19–25,
normal glucose tolerance, no prescription medication other than
oral contraceptives, no known food allergy, regular physical
activity, normal dietary habits, and no history of eating disorders.
The protocol was approved by the Human Research Ethics
Committee of the University of Sydney, and subjects gave written
informed consent. Subject recruitment took place in 2 stages:
from July to October 2005 and from July to October 2006.

Test meals

In total, 13 isoenergetic mixed meals were tested in 2000-kJ
portions. Because of the large number of meals, 6 meals were
tested by group 1 (n = 11) and 7 meals by group 2 (n = 10). The
meals represented breakfasts, lunches, dinners, and snacks in
Western diets, varying widely in macronutrient composition and
calculated GI and GL (Table 1). Nutrient content was calculated
from manufacturers’ data and Australian food composition ta-
bles (Foodworks Professional, 2005; Xyris Software, Highgate
Hill, Australia). Protein ranged from 7 to 52 g (6–44% of en-
ergy), fat from 3 to 30 g (6–56% of energy), and carbohydrate
from 29 to 92 g (25–78% of energy). GL varied over a 5-fold
range, from 10 to 51. The GL of each test meal was calculated as
the sum of the GL of the component foods:

GL ¼ 1

100

Xn

a¼1

GIa 3CHOa ð1Þ

where n was the number of foods in the meal, GIa was the GI of
the ath food, and CHOa was the available carbohydrate (in g) in
the ath food. A reliable GI was assigned to each carbohydrate
food on the basis of published (13) and unpublished data. The
FII of component foods were taken from previously published
tables (12) and our own unpublished data following the same
testing protocol. The predicted insulin demand (relative to white
bread) of each mixed meal was calculated as:

Predicted insulin demand ¼
Xn

a¼1

FIIa 3Energya ð2Þ

where n was the number of foods in the meal, FIIa was the FII of
the ath component food in the test meal and Energya (in %) was
the percentage of energy contributed by the ath food. The pre-
dicted insulin demand of the mixed meals relative to white bread
(= 100) varied over a 5-fold range from 22 to 101 (Table 1).

Experimental procedures

Test meals were consumed in random order, and the reference
meal of white bread was tested at the beginning and end of the
study. Testing sessions were separated by at least one day. Subjects
were instructed to refrain from unusual physical activity, alcohol,
and legumes on the previous day and to eat a high-carbohydrate,

low-fat meal the night before a test. On the test morning, subjects
reported to the laboratory after a 10–12-h fast. After warming the
hand in hot water, 2 baseline finger blood samples (’0.7 mL · 2)
were obtained 5 min apart. Each meal was then consumed with
250 mL water at a comfortable pace within 14 min. Additional
blood samples were taken 15, 30, 45, 60, 90, and 120 min after the
commencement of eating. Subjects remained seated throughout
and were not permitted to eat or drink until the end of session.

Blood samples were collected in anticoagulant-coated tubes
(Eppendorf tubes, grade II; Sigma Chemical Company, Castle
Hill, Australia) containing 10 IU heparin sodium salt and
centrifuged immediately (1 min at 10,000 · g at room temper-
ature). The plasma layer was pipetted into a labeled tube and
stored at 220�C until analysis. Plasma insulin was measured by
antibody-coated tube radioimmunoassay (Diagnostic Products
Corporation, Los Angeles, CA). The within- and between-assay
CVs were 3.0% and 3.5%, respectively. All samples in one
group study were analyzed within the same run.

Data analysis

The incremental insulin AUC over 120 min for each meal was
calculated according to the trapezoidal rule with the fasting
concentration as the baseline (14). Area below the fasting con-
centration was ignored. For each subject, an individual relative
insulin response (in %) was calculated by dividing the insulin
AUC value for the test meal by his or her average insulin AUC
value for white bread (tested twice) and expressed as a per-
centage. The mean (6SEM) percentage for 10 or 11 subjects
was the reported observed response to the meal. Statistically
significant differences among the meals were determined by
repeated-measures analysis of variance with the use of SPSS for
Windows, version 15.0 (SPSS, Chicago, IL). Simple (univariate)
analysis was used to test the significance of associations be-
tween the observed insulin responses, predicted insulin demand,
calculated GL, and macronutrient content of the meals. P, 0.05
(2-tailed) was considered as statistically significant and P ,
0.01 as highly significant.

RESULTS

As expected, the insulin responses to the meals varied over
a wide range with significant differences between the meals
(Figure 1A; P, 0.001). The AUC relative to white bread (= 100)
ranged from 35 6 5 to 116 6 26 (Figure 1B) and was strongly
correlated with calculated insulin demand predicted by the FII of
the component foods (r = 0.78, P = 0.0016; Figure 2A). The
calculated GL of the mixed meals was also strongly correlated
with the observed insulin response (r = 0.68, P = 0.01; Figure 2B).
In contrast, carbohydrate content was not a significant predictor of
the average response (r = 0.53, P = 0.064; Figure 2C).

We also examined the relation between the observed insulin
response and other nutrients in the meal. Fat content was in-
versely related (r =20.60, P = 0.03; Figure 2D), but protein (r =
20.04, P = 0.88; Figure 2E) and fiber (r = 20.46, P = 0.116;
Figure 2F) showed no relation.

DISCUSSION

This study shows that the degree of postprandial hyper-
insulinemia elicited by realistic mixed meals is best predicted by
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TABLE 1

Macronutrient composition, calculated glycemic load (GL), and food insulin index (FII) values for the test meals and the reference white bread1

Food categories Serving size Energy

Portion of

energy Protein Fat Fiber AvCHO GI GL FII

g kJ % g g g g

White bread2 193 2000 100 19.4 4.8 3.8 93.4 70 65 100

Group 1 meals

Breakfast meals

M1

Grain bread3 77.7 786 39.3 12.0 5.4 4.2 23.2 36 — 71

Peanut butter4 25.0 668 33.4 5.8 13.4 2.9 4.4 14 — 15

Full-fat milk5 200 546 27.3 6.8 7.2 0.0 9.6 31 — 33

Total meal 302.7 2000 100 24.6 26.0 7.1 37.2 32 12 42

M2

Honeydew melon 100 140 7 0.7 0.3 1.0 6.5 62 — 127

Banana 98 353 17.7 1.7 0.1 2.2 19.6 52 — 81

Yogurt6 300 1167 58.3 15.9 2.7 0.0 44.1 31 — 115

Apple juice7 200 340 17 0.2 0.0 0.0 20.2 39 — 64

Total meal 698 2000 100 18.5 3.1 3.2 90.4 40 36 101

Snacks

M3

Walnuts8 44 1276 63.8 7.2 29.6 4.0 1.6 N/A9 — 7

Raisins10 28.3 396 19.8 0.7 0.1 1.2 22.6 64 — 42

Carrot juice11 250 328 16.4 2.0 0.3 0.8 13.5 47 — 56

Total meal 322.3 2000 100 9.9 30.0 6.0 37.7 55 21 22

M4

Raspberry jam12 30 351 17.6 0.0 0.0 0.0 20.4 51 — 85

Croissant 85 1304 65.2 7.1 15.0 0.0 36.4 67 — 79

Ice tea13 214 345 17.2 0.0 0.0 0.0 20.6 59 — 95

Total meal 329 2000 100 7.1 15.0 0.0 77.4 61 47 83

Lunch meals

M5

Roast chicken 75 662 33.1 20.2 8.6 0.0 0.0 N/A — 23

Avocado 40 356 17.8 0.8 9.0 0.6 0.2 N/A — 6

Grain bread 97.1 982 49.1 15.1 6.8 5.3 28.9 36 — 71

Total meal 212.1 2000 100 36.1 24.4 5.9 29.1 36 10 44

Dinner meals

M6

Tuna14 110 815 40.8 19.6 12.3 0.0 1.8 N/A — 22

White rice15 221.7 981 49.0 4.3 0.0 0.0 52.4 75 — 79

Corn16 45 204 10.2 1.3 0.7 0.0 8.7 47 — 53

Total meal 376.7 2000 100 25.2 13 0.0 62.9 69 43 53

Group 2 meals

Breakfast meals

M7

All-Bran cereal17 245 1500 75 17.2 4.6 21.2 61.0 30 32

Apple juice 294 500 25 0.3 0.0 0.0 29.7 39 64

Total meal 539 2000 100 17.5 4.6 21.2 90.7 33 30 40

M8

Poached eggs 159 1000 50 19.6 17.8 0.0 0.5 N/A — 31

Whole-meal

bread18
101 1000 50 7.6 2.6 6.6 38.9 68 — 96

Total meal 260 2000 100 27.2 20.4 6.6 39.4 67 26 64

Snack meals

M9

Banana 279 1000 50 4.8 0.3 6.2 55.5 52 — 81

Full-fat milk 352 1000 50 12.0 13.7 0.0 16.5 31 — 33

Total meal 631 2000 100 16.8 14.0 6.2 72.0 47 34 57

M10

Cookies19 49 1000 50 2.7 10.4 0.0 17.3 62 — 92

Ice cream20 123 1000 50 6.5 12.3 0.0 27.1 50 — 89

Total meal 172 2000 100 9.2 22.7 0.0 44.4 55 24 91

(Continued)
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a novel classification based on ranking the insulin responses to
individual foods (ie, the FII). Surprisingly, in the current context,
carbohydrate, fiber, and protein content were found to be rela-
tively poor predictors of the overall insulin response, whereas GL
(the product of the available carbohydrate content and the GI of
the component foods) and fat content were significant predictors,
although less so than the FII. The findings suggest that if the
database were sufficiently large, the FII classification could
provide a more accurate alternative to carbohydrate content for
estimating insulin demand of different meals and diets. This
classification may be useful in nutritional epidemiology because
diets associated with high-insulin demand have been hypothe-
sized to increase the risk of diabetes, obesity, and cardiovascular

disease (15, 16). A system of ranking of foods based on relative
insulin demand could also have application in the clinical
management of diabetes.

The present study has both strengths and limitations. The
mixed meals were designed to represent typical Western diets,
and we selected component foods with a wide range of FIIs with
the expectation that the range of insulin responses among the
mixed meals would also be high. Although the predicted insulin
demand varied over a 5-fold range (from 22 to 101), actual insulin
responses ranged only 3-fold (from 35 to 116). The meal with the
lowest predicted demand (M3: a snack of walnuts, raisins, and
carrot juice) produced a somewhat higher than expected insulin
response, although nonetheless the lowest of all 13 meals.

TABLE 1 (Continued )

Food categories Serving size Energy

Portion of

energy Protein Fat Fiber AvCHO GI GL FII

g kJ % g g g g

Lunch meals

M11

Pizza21 90 1000 50 12.4 7.6 0.0 30.2 60 — 64

Coca-Cola22 583 1000 50 0.0 0.0 0.0 61.8 53 — 60

Total meal 673 2000 100 12.5 7.6 0.0 92.0 55 51 62

Dinner meals

M12

Pasta23 201 1000 50 7.8 8.0 3.5 45.6 44 — 40

Lentils24 253 1000 50 19.4 4.6 11.4 17.7 37 — 58

Total meal 454 2000 100 27.2 12.6 14.9 63.3 42 27 49

M13

Beef steak 158 1000 50 42.0 7.7 0.0 0.0 N/A — 51

Boiled potatoes25 368 1000 50 10.0 1.0 9.2 39.8 77 — 121

Total meal 526 2000 100 52.0 8.7 9.2 39.8 77 31 86

1 Glycemic index (GI) and GL values of the mixed meals were calculated with the use of GIs of individual food components and available carbohydrate

content. The FII value of each test meal in this table represented the predicted insulin response relative to white bread, which was calculated by the formula

described in Subjects and Methods. AvCHO, available carbohydrate; M, meal; N/A, not applicable.
2 Fresh-sliced wheat-flour bread; Sunblest Tip Top Bakeries, Enfield, Australia.
3 Burgen Soy Lin bread; George Weston Foods, Chatswood, Australia; the grain bread contains whole-grain kibble wheat (4%), kibble soy (8%), and

linseed (8%).
4 Kraft, smooth; Kraft Foods (Australia) Ltd, Fishermans Bend, Australia.
5 Dairy Farmers, Lidcombe, Australia.
6 Ski D’lite low-fat strawberry; Dairy Farmers.
7 Berri apple juice; Berrivale Orchards Ltd, Docklands, Australia.
8 Lucky California walnuts; Select Harvests Food Products Pty Ltd, Thomastown, Australia.
9 GI of the component food is negligible because of the small amount of carbohydrate contained.
10 Sunbeam Foods, Irymple, Australia.
11 Extracted from fresh, raw carrots.
12 Cottees, Southbank, Australia.
13 TAISUN lemon ice tea; Narkena Pty Ltd, Sefton, Australia.
14 Coles Tuna Chunks in Oil; Coles, Sydney, Australia.
15 SunRice White; SunRice, Leeton, Australia.
16 McCain Super Juicy frozen corn; McCain Foods (Australia) Pty Ltd, Wendouree, Australia.
17 Wheat-bran cereal, served with 125 mL low-fat milk; Kellogg Pty Ltd, Melbourne, Australia.
18 Fresh-sliced bread made from whole-meal wheat flour; Riga Bakeries, Sydney, Australia.
19 Chocolate-chip cookies; Arnott’s Biscuits Ltd, Newcastle, Australia.
20 Vanilla ice cream; Dairy Farmers.
21 Pizza base: white-flour pizza base (McCain Foods); tomato paste (Leggo tomato paste; JR Simplot, Mentone, Australia); cheese: shredded mozzarella

cheese (Perfect Italiano; Fonterra Pty Ltd, Mount Waverley, Australia).
22 Coca-Cola Amatil (Australia) Pty Ltd, Northmead, Australia.
23 Pasta: white spiral pasta; San Remo Pasta Company, Wetherill Park, Australia.
24 Lentils: served in a basic tomato sauce. Ingredients: 15 mL olive oil, 350 g dried green lentils, 410 g canned tomatoes, 120 g onion, 1 clove garlic, 1

teaspoon pepper.
25 Russet potatoes, peeled and boiled for 20 min before serving.
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Similarly, the meal with the highest predicted demand (M2:
a breakfast of honeydew melon, banana, and yogurt) produced
a response a little higher than expected, but the highest response
in practice. Our study also shows that some meals with widely
disparate carbohydrate content had similar insulin responses
(both observed and predicted). For example, M12 and M1 had
comparable FIIs (observed 45 and 44, predicted 49 and 42, re-
spectively), yet their carbohydrate content varied markedly (63
and 37 g, respectively). If carbohydrate counting was used to
predict the bolus insulin dose in type 1 diabetes, then the dose for
these meals would vary accordingly. In contrast, the FII suggests
the meals generate the same insulin demand. Nonetheless, the
study’s limitations should also be noted: the small number of
meals, some with contrived portion sizes and relatively low fiber
content. The statistical power is therefore low, and it would not be
appropriate to dismiss available carbohydrates and fiber as related
to insulin response.

The advantage of a classification system in which a reference
food is used is that data can be derived from testing different
groups of people. In the present study, the 2 groups of subjects
clearly show differences in insulin secretion, the first group
showing an average insulin response to white bread which is
approximately half that of the second group (mean6 SEMAUC:
14,350 6 2260 compared with 30,700 6 3100 pmol · min/L,
respectively). However, this large between-subject variation was
diminished when the subjects’ individual responses were in-
dexed to a reference food. Moreover, testing the reference food
twice reduces the effect of day-to-day variability within in-
dividuals. Hence, these sources of variation within and between

subjects can be managed sufficiently to be able to show true
differences among foods and meals in their capacity to stimulate
insulin secretion. However, our choice of subjects may also be
a significant limitation because any ranking of foods according
to insulin demand in lean, young healthy subjects may not be
directly applicable to the diabetic population or the general
population. Worsening insulin resistance in overweight subjects
and impairment in b cell function in diabetic individuals will
reduce the capacity to respond appropriately to everyday meals
and therefore reduce the range of responses seen. Nonetheless,
our findings could be applicable in the early stages of de-
velopment of disease when b cell function is adequate.

Currently, carbohydrate counting is commonly recommended
for matching insulin dosage to insulin demand in individuals with
type 1 diabetes, although the emphasis on carbohydrate counting
varies between clinics, and many dietitians consider that it is too
simplistic. In the present study, mixed meals with similar car-
bohydrate content produced widely disparate insulin responses.
For example, meal M13 (beef steak and potatoes) with ’40 g
carbohydrate produced twice the insulin response of meal M1
(grain bread, peanut butter, and milk) despite a similar amount
of carbohydrate (’37 g). Although the addition of protein or fat
to a carbohydrate-rich meal is known to evoke additional or
synergistic insulin secretion and to contribute to the reduction in
glycemia (8, 17, 18), these variables are often not considered in
the day-to-day management of diabetes. Because the FII clas-
sification allows all the factors influencing insulin demand to be
integrated into a single result, it may be an attractive component
in the very complex treatment of type 1 diabetes.

FIGURE 1. Mean (6SEM) insulin responses (area under the insulin curve) (A) and actual food insulin index (B) values (relative to white bread = 100)
evoked by 13 mixed meals compared with an isoenergetic white bread reference meal. Because of the large number of meals, 6 meals were tested by 11
subjects in group 1 and 7 meals by 10 subjects in group 2. Repeated-measures analysis of variance was used to determine significant differences. M, meal.
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Interestingly, in the present study, the fat content of the mixed
meal showed a significant inverse relation (r = 20.60) with
observed insulin responses and was a more reliable predictor of
insulin demand than the amount of carbohydrate. This finding
is consistent with our previous study of 38 single foods (12).
The explanation may be the reciprocal relation between fat and
the sum of the other 2 macronutrients, protein and carbohy-
drate. Although carbohydrate is the primary stimulus for in-
sulin secretion, insulinotropic amino acids and bioactive
peptides are also potent stimulators of insulin release (11, 19,
20). Because protein stimulates insulin secretion, particularly
when combined with carbohydrate (8, 20), the meals with the
highest protein and carbohydrate content (and hence lowest fat
content) produce the highest insulin responses.

Further research is needed to validate the FII concept and to
show its usefulness. The ability of FII to predict the diet-disease
relation in epidemiologic research vis-á-vis other nutrients, GI,
and GL will be a major test of its usefulness. Although the

database currently has 120 single foods, including the most
common sources of energy in Western diets (12) (J Bao, F
Atkinson, JC Brand-Miller, unpublished data, 2007), further ex-
pansion is required. Dose-response and day-long investigations
extending from breakfast to the evening meal are needed. To
confirm the food rankings in a broader population, studies in
overweight and obese subjects and in individuals with impaired
glucose tolerance and impaired insulin secretion, including type 2
diabetes, should be undertaken. Although it is possible that
worsening defects in insulin secretion may obviate the ability to
detect differences among foods, the concept itself may still be
relevant in the management of those conditions.

In summary, the relative insulin demand evoked by mixed
meals consumed by lean young healthy subjects is best predicted
by a physiologic index based on integrating insulin responses to
isoenergetic portions of single foods. In the context of composite
meals of similar energy value but varying macronutrient content,
carbohydrate counting had limited value.

FIGURE 2. A–F: Univariate correlations between observed insulin responses (relative to white bread = 100) and insulin demand as predicted by food
insulin index of component foods, glycemic load, or macronutrients of the 13 mixed meals.
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